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Abstract. We compute all the automorphisms in GL2(Z) of an integral binary quadratic form.

Two tables at the end summarize the results. This note is part of [1].

1. Setup

We consider

Q =

(
x y
y z

)
M =

(
a b
c d

)
.

Here Q is a (weakly) reduced integral quadratic form, that is x, z ̸= 0, 2|y| ≤ x ≤ z, 2y, x, z ∈ Z
and det(Q) > 0, and M ∈ GL2(Z). We are looking for the couples (Q,M) such that

Q = M tQM.

Note first that if we replace M by −M , we get the same result. Therefore we only consider
matrices up to multiplication by ±1. The computation gives

0 = M tQM −Q =

(
a2x+ 2acy + c2z − x abx+ (ad+ bc)y + cdz − y

abx+ (ad+ bc)y + cdz − y b2x+ 2bdy + d2z − z

)
.(1.1)

We consider the first entry. Using the identity u2 + v2 ≥ 2|uv|, we have

0 = a2x+ 2acy + c2z − x ≥ 2|ac|(
√
xz − |y|)− x ≥ |ac|x− x.

Therefore we have |ac| ≤ 1. We have to work a bit more for the last entry. Suppose that |d| ≥ 2.
Then d2 − 1 ≥ 3

4d
2 and so

0 = b2x+ 2bdy + (d2 − 1)z ≥ 2|b|
√

d2 − 1
√
xz − 2|bdy| ≥ 2|bd|(

√
3/4

√
xz − |y|).

Since
√
3/4 > 1/2, we have b = 0. Therefore we have two cases: |d| ≤ 1 or b = 0.

2. Diagonal and antidiagonal M

We begin with the two easy cases of diagonal and antidiagonal matrix M . There are 4 possibilities
up to multiplication by −1:

M =

(
1 0
0 1

)
,

(
1 0
0 −1

)
,

(
0 1
−1 0

)
,

(
0 1
1 0

)
.

The identity is an automorphism for any matrix Q. Looking at Equation (1.1), we get respectively
for the other three matrices

0 =

(
0 −2y

−2y 0

)
,

(
z − x −2y
−2y x− z

)
,

(
x− z 0
0 z − x

)
.

Therefore the conditions on Q are respectively y = 0, x = z ∧ y = 0 and x = z.
1
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3. Diagonal Q

We quickly consider the case y = 0, so we can rule out this later. Equation (1.1) rewrites as

0 =

(
a2x+ c2z − x abx+ cdz
abx+ cdz b2x+ d2z − z

)
.

First, if a = 0, then b, c = ±1 since the determinant is bc = ±1. The first entry gives x = z
and the second entry gives d = 0. If c = 0, then a, d = ±1 and the diagonal entries vanish. The
second entry gives b = 0. In both cases, we are back to a diagonal or antidiagonal M . Otherwise, if
ac = ±1, then the first entry gives z = 0 which is a contradiction. So all these cases fit in the last
section. From now, we suppose that y ̸= 0

4. The case ac = 0

If c = 0, then automatically a and d equal ±1 since the determinant is ad. That gives the matrices

M =

(
1 n
0 1

)
,

(
1 n
0 −1

)
for n a non-zero integer. The other cases can be obtained by multiplying by −1. Looking at

Equation (1.1), we have

0 =

(
0 anx+ (ad− 1)y

anx+ (ad− 1)y n2x+ 2dny

)
.

So if ad = 1 like in the first case, then x = 0 and there is no such Q. In the second case, ad = −1
and we get nx = 2y or nx+ 2y = 0. Since x ≥ 2|y|, we get n = sgn(y) and x = 2|y|. Now, if a = 0
then bc = ±1 and we have the matrices

M =

(
0 1
1 n

)
,

(
0 1
−1 n

)
.

Equation (1.1) rewrite as

0 =

(
z − x (bc− 1)y + cnz

(bc− 1)y + cnz x+ 2bny + (n2 − 1)z

)
.

If bc = 1, then z = 0 and there is no such matrix. Otherwise, x = z and we get the two equations
nx = 2y and nx+ 2y = 0. Again, x ≥ 2|y| so n = − sgn(y) and x = 2|y|.

5. The case ac = 1

We have a = c = ±1, without loss of generality say a = c = 1. Therefore the first entry of the
matrix is 2y + z = 0. Since 2|y| ≤ x ≤ z, we get −2y = x = z. Equation (1.1) rewrites as

0 =

(
0 −by − dy − y

−by − dy − y −2b2y + 2bdy − 2(d2 − 1)y

)
.

If b = 0, then the second entry gives d + 1 = 0 so d = −1 and this is compatible with the last
entry. If b ̸= 0, then we have two cases. If d = 0, then the second equation gives b = −1. This is
compatible with the last entry. If d = ±1, then the last entry is −2b2y + 2bdy = 0, so that b = d.
There is no such matrix with determinant ±1 and it is also incompatible with the second entry.
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6. The case ac = −1

We have a = −c = ±1, without loss of generality say a = −c = 1. So the first entry of Equation
(1.1) gives 2y = z. Since 2|y| ≤ x ≤ z, we have 2y = x = z. The full matrix rewrites

0 =

(
0 by − dy − y

by − dy − y 2b2y + 2bdy + 2d2y − 2y

)
.

If b = 0, then the second entry gives d = −1 and is compatible with the last. If b ̸= 0, then d = 0
gives b = 1 for both equations. If d = ±1, then the last entry is 2b2y + 2bdy = 0 so b = −d. This is
incompatible with the second entry that says b = d+ 1 (for integral b and d).

7. Summary

We summarize the result in the table below. The first column indicates the sign of the determinant
of M . For each matrix M , there is the matrix −M that has the same action on Q. Note that except
for the fourth entry, y is always supposed to be non-zero.

det(M) M Q

+

(
1 0
0 1

)
Any

−
(
1 0
0 −1

) (
x 0
0 z

)
+

(
0 1
−1 0

) (
x 0
0 x

)
−

(
0 1
1 0

) (
x y
y x

)
−

(
1 ±1
0 −1

) (
2y ±y
±y z

)
+

(
0 1
−1 ±1

) (
2y ±y
±y 2y

)
−

(
1 0
±1 −1

) (
2y ∓y
∓y 2y

)
+

(
±1 1
−1 0

) (
2y ±y
±y 2y

)

We rewrite this table in terms of Q. The second column lists all the automorphisms of Q (modulo
±id). The three following columns indicates respectively the number of automorphisms in SL2(Z),
in GL2(Z) and the ratio between the two. The last column gives the corresponding Heegner point

z =
−y+i

√
xz−y2

x . Here y ̸= 0 everywhere and y > 0 except in the third row. We say that Q is
reduced if x = z or x = 2|y|. In that case we can, furthermore, suppose that y > 0. This removes
the fifth and the seventh rows.
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Q M SL2(Z) GL2(Z) Ratio Heegner pt(
x 0
0 z

) (
1 0
0 1

)
,

(
1 0
0 −1

)
2 4 2 i

√
z
x(

x 0
0 x

) (
1 0
0 1

)
,

(
1 0
0 −1

)
,

(
0 1
−1 0

)
,

(
0 1
1 0

)
4 8 2 i(

x y
y x

) (
1 0
0 1

)
,

(
0 1
1 0

)
2 4 2

−y+i
√

x2−y2

x(
2y y
y z

) (
1 0
0 1

)
,

(
1 1
0 1

)
2 4 2 −1

2 + i
√
2z−y
2
√
y(

2y −y
−y z

) (
1 0
0 1

)
,

(
1 −1
0 −1

)
2 4 2 1

2 + i
√
2z−y
2
√
y(

2y y
y 2y

) (
1 0
0 1

)
,

(
0 1
1 0

)
,

(
1 1
0 −1

)
,

(
0 1
−1 1

)
,

(
1 0
−1 −1

)
,

(
1 1
−1 0

)
6 12 2 −1+i

√
3

2(
2y −y
−y 2y

) (
1 0
0 1

)
,

(
0 1
1 0

)
,

(
1 −1
0 −1

)
,

(
0 1
−1 −1

)
,

(
1 0
1 −1

)
,

(
1 −1
1 0

)
6 12 2 1+i

√
3

2

Other

(
1 0
0 1

)
2 2 1

−y+i
√

xz−y2

x
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