HOMEWORK 1 - DUE ON 06/16/2025

- (1) (a) Find $(\frac{1}{2} + \frac{\sqrt{3}}{2}i)^{30}$ in Cartesian coordinates. (b) Solve $z^4 + 1 = 0$ in \mathbb{C} .
- (2) Let n be a positive integer and w a non-zero complex number. Show that there are exactly n complex numbers z such that $z^n = w$. Describe geometrically the numbers z for w = 1. In particular, the n-th root function $\sqrt[n]{}$ is only defined for (positive) real numbers. *Hint: use polar coordinates.*
- (3) Let n be a positive number and $w_0 = 1, w_1, \ldots, w_{n-1}$ be the n-th root of unity (i.e. $w_k^n = 1$). Show that for any integer m, we have

$$\sum_{k=0}^{n-1} w_k^m = \begin{cases} n & \text{if } n \mid m, \\ 0 & \text{if } n \nmid m. \end{cases}$$

Hint: use that the map $w_k \rightarrow e^{2\pi i/n} w_k$ *permutes the roots.*

(4) Let M ⊆ C be an arbitrary subset of the complex plane. Show the following:
(a) ∂M = M ∩ M^c.
(b) ∂M ⊂ ∂M.

For part a), use the disk characterization of the closure. For part b), express boundary from closure and interior.

- (5) Describe in geometric terms and draw a picture of the set of complex numbers z satisfying the following equations.
 - (a) 1 < |z i| < 2, (b) |z - 1| = |z - i|, (c) $\overline{z} = \frac{4}{z}$, (d) $\operatorname{Im}\left(\frac{z-2}{3}\right) > 0$.
- (6) Let $M \subseteq \mathbb{C}$ be an arbitrary set. Show that the following are equivalent:
 - (a) M is open and closed.
 - (b) $\partial M = \emptyset$.
 - (c) $M = \emptyset$ or $M = \mathbb{C}$.