HOMEWORK 4

(1) Let $w \in D(0,1)$. Consider the function

$$g_w(z) := \frac{w - z}{1 - \bar{w}z}$$

on D(0,1). Show that g_w is a holomorphic bijection from D(0,1) to D(0,1). Hint: verify that g_w maps D(0,1) to itself by proving $(w-z)(\bar{w}-\bar{z}) < (1-\bar{w}z)(1-z\bar{w})$. Verify that $g_w \circ g_w(z) = z$ for any $z \in D(0,1)$.

- (2) Let $f:D(a,r)\to\mathbb{C}$ be a holomorphic function. Suppose that f has no holomorphic extension to any disk D(a,R) with R>r. Show that r is the radius of convergence of the Taylor series of f at a. Hint: the problem has a quick solution if you quote the right theorems from the class. Show that the radius of convergence is at least r. Then show it can't be bigger than r.
- (3) Let $f:D(a,r)\to\mathbb{C}$ be a holomorphic function, show that f has a holomorphic extension to \mathbb{C} if and only if $\sqrt[n]{|f^{(n)}(a)|} = o(n)$ as $n \to \infty$. Hint: combine the theorem on holomorphicity of power series with the Cauchy-Hadamard formula.
- (4) Prove the Cauchy inequalities: for a holomorphic function $f:M\to\mathbb{C}$ on a region M and $\bar{D}(z_0,R)\subseteq M$, we have

$$\left| f^{(n)}(z_0) \right| \le \frac{n! \, \|f\|_{\partial D(z_0, R)}}{R^n}$$

where $||f||_{\partial D(z_0,R)} = \sup_{z \in \partial D(z_0,R)} |f(z)|$ denote the supremum norm of f on $\partial D(z_0,R)$.

- (5) Let $f:D(a,R)\to\mathbb{C}$ be a holomorphic function. Show that the range of f has diameter at least 2R|f'(a)|. Hint: consider g(z) = f(a+z) - f(a-z) and estimate g'(0) via the Cauchy inequalities.
- (6) Let n>0 be an integer and $f:\mathbb{C}\to\mathbb{C}$ be an entire function such that $|f(z)/z^n|\to 0$ as $|z| \to \infty$. Show that z is a polynomial of degree less than n. Hint: mimic the proof of Liouville's theorem, i.e. bound the n-th coefficient of the Taylor series using Cauchy's formula.
- (7) Let $f: \mathbb{C} \to \mathbb{C}$ be an entire function mapping \mathbb{R} to \mathbb{R} . Show that if z is a zero of f, then so is \bar{z} . Hint: apply the identity theorem (Chapter 2, Corollary 4.9 in the book) to f(z) and $\overline{f(\bar{z})}$.
- (8) Is there a holomorphic function on a region containing the origin such that:

(a)
$$f(\frac{1}{n}) = \frac{1}{2n+1}$$
?

(a)
$$f(\frac{1}{n}) = \frac{1}{2n+1}$$
?
(b) $f(\frac{1}{n}) = f(-\frac{1}{n}) = \frac{1}{2n+1}$?