HOMEWORK 6 - DUE ON 07/24/2025

- (1) Find the Laurent series of $\frac{1}{(z-1)(z-2)}$ in the annuli A(0,0,1), A(0,1,2) and $A(0,2,\infty)$. Hint: use partial fractions and write each term as a geometric series.
- (2) Use any method you like to find (n > 0 is an integer)

(b)
$$\int_{|z+1|=2} \frac{e^z}{(z+1)^{34}} dz,$$

$$\int_{|z-1|=1} \left(\frac{z}{z-1}\right)^n dz.$$

- (3) Let $f: \mathbb{C} \to \mathbb{C}$ be a holomorphic function. Show that f(1/z) has a pole at z=0 if and only if f is a non-constant polynomial. Hint: start from the Taylor series of f(z) at the origin.
- (4) Prove the identity

$$\left(\frac{\pi}{\sin(\pi z)}\right)^2 = \sum_{n=-\infty}^{\infty} \frac{1}{(z+n)^2}$$

for $z \in \mathbb{C}\backslash\mathbb{Z}$. Bonus: deduce that $\zeta(2) = \frac{\pi^2}{6}$. Hint: show that the difference of the two sides extends to a bounded entire function whose limit as $\text{Im}(z) \to \pm \infty$ is 0.

(5) Show that

$$\int_{-\infty}^{\infty} \frac{dx}{(1+x^2)^{n+1}} = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} \cdot \pi.$$

Hint: follow the method of exercise (8) in homework 5.

- (6) Construct a function f that has a non-isolated singularity and countably many singularities. Hint: consider the z such that $e^{1/z}$ is 1.
- (7) Let $f(z) = \frac{(z-2)^3 e^z}{(z-1)^4}$. Find

$$\int_{|z|=r} \frac{f'(z)}{f(z)} dz$$

for r = 3 and r = 3/2.

(8) Let $f(z) = a_n z^n + \cdots + a_1 z + a_0$ be a polynomial. Show that if $|a_k| r^k > \sum_{j \neq k} |a_j| r^j$ for some r > 0, then f has exactly k roots inside D(0, r). Hint: use Rouché's theorem.