HOMEWORK 7 - BONUS

- (1) Find the maximum of $z^2 3iz$ on $\bar{D}(0, 1)$.
- (2) Use the Cauchy inequalities or the maximum modulus principle to show the following. Let A, B > 0 two constants and k an integer. If f is an entire function such that

$$\max_{|z|=R} |f(z)| \le AR^k + B$$

for all R > 0, then f is a polynomial of degree at most k.

(3) Consider the function

$$f(z) = \sum_{n \in \mathbb{Z}} e^{2\pi i n^2 z}.$$

Show that f converges in the upper half-plane $\{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$ and that it is a holomorphic function there. Remark: such a function is called a theta series. It is an example of modular form.

(4) Consider the series

$$f(z) = \sum_{n=0}^{\infty} \frac{z^n}{2^n - 1}.$$

- (a) Show that f is holomorphic on the disk D(0,2).
- (b) Show that f extends uniquely to a meromorphic function F on \mathbb{C} . Hint: compute f(2z) f(z).
- (c) Find all poles and residues of F.
- (5) Let f be a holomorphic function with a Taylor series $\sum_{n=0}^{\infty} a_n (z-z_0)^n$. Suppose that $a_0 = a_1 = \cdots = a_N = 0$. Show that there is a function g such that $g^N = f$. How many distinct possibilities for g are there?
- (6) Find a biholomorphic function between the upper half-plane $\{z \in \mathbb{C} : \text{Im}(z) > 0\}$ and the slit plane $\mathbb{C}\setminus(-\infty,0]$.
- (7) Let M be a bounded region. Let I be an open segment in M that cuts M into two regions M_1 and M_2 (i.e. $M \setminus I = M_1 \cup M_2$ and $M_1 \cap M_2 = \emptyset$). Show that if M_1 and M_2 are simply connected, then M is simply connected.
- (8) Weierstrass' theorem states that a continuous function on [0,1] can be uniformly approximated by polynomials. Can every function on the closed disk D(0,1) be uniformly approximated by complex polynomials? Or by general holomorphic function on D(0,1)?