
SOLUTION HOMEWORK 1

(1) (a) Find (12 +
√
3
2 i)30 in Cartesian coordinates.

(b) Solve z4 + 1 = 0 in C.

Solution:
(a) We have z = 1

2 +
√
3
2 i = eiπ/3. Then z30 = e10iπ = 1.

(b) Write z = reit. Then −1 = eiπ = r4e4it. We deduce that r = 1, since r > 0, and 4t = π
(mod 2π). For 0 ≤ t < 2π, this gives the solutions t = π

4 + k π
2 , k = 0, 1, 2, 3.

(2) Let n be a positive integer and w a non-zero complex number. Show that there are exactly
n complex numbers z such that zn = w. Describe geometrically the numbers z for w = 1.
In particular, the n-th root function n

√
· is only defined for (positive) real numbers. Hint: use

polar coordinates.

Solution: Suppose that w = reit. Then the numbers zn = r1/nei(
t
n+ 2πk

n ) are clearly distinct
solutions for k = 0, 1, . . . , n− 1. Here r1/n is the positive n-th root of r, well defined since it
is a real positive number. Moreover, a degree n polynomial can’t have more than n roots so
they are the only ones. More precisely, we can write

zn − w =

n−1∏
k=0

(
zn − r1/nei(

t
n+ 2πk

n )
)
.

If z is such that zn −w = 0, then it must cancel one of the factors on the right and so be one
of the roots given above.

(3) Let n be a positive number and w0 = 1, w1, . . . , wn−1 be the n-th root of unity (i.e. wn
k = 1).

Show that for any integer m, we have

n−1∑
k=0

wm
k =

{
n if n | m,

0 if n ∤ m.

Hint: use that the map wk → e2πi/nwk permutes the roots.

Solution: Clearly, if n | m, then wm
k = 1 for all k and the sum is n. Note that w1 ·wk = wk+1

and w1 ·wn−1 = 1. So the multiplication by w1 permutes all the roots. If n ∤ m, then wm
1 ̸= 1.

We compute

wm
1

n−1∑
k=0

wm
k =

n−1∑
k=0

(wkw1)
m =

n−1∑
k=0

wm
k .

So the sum must be 0.

(4) Let M ⊆ C be an arbitrary subset of the complex plane. Show the following:
(a) ∂M = M ∩M c.
(b) ∂M ⊆ ∂M .
For part a), use the disk characterization of the closure. For part b), express boundary from
closure and interior.

Solution:
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(a) Note that z ̸∈ int(M) ⇔ ∀r > 0 D(z, r) ̸⊆ M ⇔ ∀r > 0 D(z, r) ∩M c ̸= ∅. Then
z ∈ M ∩M c ⇔ z ∈ M and z ∈ M c

⇔ z ∈ M and ∀r > 0 D(z, r) ∩M c ̸= ∅
⇔ z ∈ M and z ̸∈ int(M)

⇔ z ∈ M\ int(M).

Note that in particular, we showed that int(M)c = M c.
(b) Claim: we have int(M) ⊆ int(M). This is because if z ∈ intM , there exists r > 0 with

D(z, r) ⊆ M ⊆ M . Moreover M = M , since M is closed. Therefore

∂M = M\ int(M) ⊆ M\ int(M) = ∂M.

(5) Describe in geometric terms and draw a picture of the set of complex numbers z satisfying the
following equations.
(a) 1 < |z − i| < 2,
(b) |z − 1| = |z − i|,
(c) z̄ =

4

z
,

(d) Im
(
z−2
3

)
> 0.

Solution:
(a) Open annulus of center i and of radii 1 and 2.
(b) Line x = y. These are the points at the same distance from 1 and i.
(c) Circle centered at 0 and of radius 2.
(d) Open upper half-plan Im(z) > 2.

(6) Let M ⊆ C be an arbitrary set. Show that the following are equivalent:
(a) M is open and closed.
(b) ∂M = ∅.
(c) M = ∅ or M = C.

Solution:
(a) ⇔ (b) : M is open and closed ⇔ int(M) = M ⇔ ∂M = M\ int(M) = ∅.
(a) ⇒ (c) : note that C is path-connected: given z1, z2 ∈ C, the segment [z1, z2], parametrized
by u(t) = (1 − t)z1 + tz2, t ∈ [0, 1], connects the two points. In particular, C is connected. If
M ̸= C, ∅ and M is open and closed, then M c ̸= ∅ and M c is open. Then C = M ∪M c and
M ∩M c = ∅, contradicting the connectedness of C.
Other solution : by contradiction, suppose that M is open and closed and that there exists
z1 ∈ M and z2 ̸∈ M . Consider the segment [z1, z2] parametrized by u(t) = (1 − t)z1 + tz2,
t ∈ [0, 1]. Consider t0 = sup{t ∈ [0, 1] : u(t) ∈ M}. If t0 = 0 resp. 1, then z1 ∈ ∂M resp.
z2 ∈ ∂M . Contradiction. Suppose that t0 ∈ (0, 1). First suppose that u(t0) ∈ M . Since M is
open, there exists r > 0 such that D(u(t0), r) ⊆ M . Consider δ = r

2|z2−z1| and t1 = t0 + δ.

Claim: u(t1) ∈ M . We compute

|u(t1)− ut(0)| = |(1− t0 − δ)z1 + (t0 + δ)z2 − (1− t0)z1 − t0z2| = δ |z1 − z2| =
r

2
.

So u(t0 + δ) ∈ M . Contradiction with the definition of t0. If u(t0) ̸∈ M , note that M c is open
since M is closed. The same reasoning with a disk in M c leads to a contradiction.
(c) ⇒ (a) : both set are clearly open. Moreover they are complement of each other so they are
also closed.


