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SOLUTION HOMEWORK 1

(a) Find (5 + @i)% in Cartesian coordinates.
(b) Solve 2* +1 =0 in C.

Solution: e
(a) We have z = 1 + ¥3j = ¢i™/3. Then 2% = 10" = 1.
(b) Write z = re®®. Then —1 = '™ = re*. We deduce that r = 1, since r» > 0, and 4t = 7
mod 27). For 0 <t < 27, this gives the solutions t = Z + k%, k=0,1,2,3.
1 2

Let n be a positive integer and w a non-zero complex number. Show that there are exactly
n complex numbers z such that z” = w. Describe geometrically the numbers z for w = 1.
In particular, the n-th root function /- is only defined for (positive) real numbers. Hint: use
polar coordinates.
Solution: Suppose that w = re®. Then the numbers z, = rl/neii+4E) are clearly distinct
solutions for k = 0,1,...,n — 1. Here /™ is the positive n-th root of r, well defined since it
is a real positive number. Moreover, a degree n polynomial can’t have more than n roots so
they are the only ones. More precisely, we can write

n—1

2" —w = H (z” — rl/”ei(%J“%)) .

k=0
If 2z is such that 2™ —w = 0, then it must cancel one of the factors on the right and so be one
of the roots given above.

Let n be a positive number and wy = 1, w1, ..., w,—1 be the n-th root of unity (i.e. wi =1).
Show that for any integer m, we have

= m {n if n | m,
E Wy =
0

P if ntm.

Hint: use that the map wy — e27/™

wy permutes the roots.

Solution: Clearly, if n | m, then w}* =1 for all k£ and the sum is n. Note that wy - wy = w41
and wy - w,—1 = 1. So the multiplication by wy permutes all the roots. If n { m, then w]* # 1.
‘We compute

n—1 n—1 n—1
wy® E wp = g (wpwy)™ = E wi'.
k=0 k=0 k=0

So the sum must be 0.

Let M C C be an arbitrary subset of the complex plane. Show the following;:

(a) OM = M N Me.

(b) OM C OM.

For part a), use the disk characterization of the closure. For part b), express boundary from
closure and interior.

Solution:



SOLUTION HOMEWORK 1

(a) Note that z € int(M) < Vr >0 D(z,7) € M < Vr >0 D(z,7) N M€ # (). Then
zeMNMe& ze M and 2z € M¢
s zeMand Vr >0 D(z,r) N M®#£0
& 2z € M and z ¢ int(M)
& z € M\ int(M).

Note that in particular, we showed that int(M)¢ = Me.
(b) Claim: we have int(M) C int@). This is because if z € int M, there exists r > 0 with

D(z,7) € M C M. Moreover M = M, since M is closed. Therefore
OM = M\ int(3M) C M\ int(M) = OM.

(5) Describe in geometric terms and draw a picture of the set of complex numbers z satisfying the
following equations.
(a) 1< |z—1] <2,

|Z_1| = |Z_i|7

Solution:
(a) Open annulus of center ¢ and of radii 1 and 2.
(b) Line & = y. These are the points at the same distance from 1 and i.
(c) Circle centered at 0 and of radius 2.
(d) Open upper half-plan Im(z) > 2.

(6) Let M C C be an arbitrary set. Show that the following are equivalent:
(a) M is open and closed.
(b) OM = 0.
(¢) M=0or M=C.

Solution:

(a) & (b) : M is open and closed < int(M) = M < M = M\ int(M) = 0.

(a) = (c¢) : note that C is path-connected: given 21, 2o € C, the segment [21, 23], parametrized

by u(t) = (1 —t)z1 + tza, t € [0, 1], connects the two points. In particular, C is connected. If

M # C,( and M is open and closed, then M€ # () and M€ is open. Then C = M U M¢ and

M N M€ = (), contradicting the connectedness of C.

Other solution : by contradiction, suppose that M is open and closed and that there exists

21 € M and z2 ¢ M. Consider the segment [z1, 2z2] parametrized by u(t) = (1 — t)z1 + tza,
€ [0,1]. Consider to = sup{t € [0,1] : u(t) € M}. If t; = 0 resp. 1, then z; € OM resp.

zo € OM. Contradiction. Suppose that ¢y € (0,1). First suppose that u(tg) € M. Since M is

open, there exists r > 0 such that D(u(t),r) € M. Consider § = Moz and &1 = o + 9.

z1]
Claim: u(t;) € M. We compute
r

\u(tl) — Ut(0)| = |(1 e (5)211 + (to + (5)2’2 — (1 — to)Zl — t022| =0 |Zl — Zgl = §
So u(to + 6) € M. Contradiction with the definition of ¢o. If u(¢g) & M, note that M€ is open
since M is closed. The same reasoning with a disk in M€ leads to a contradiction.
(¢) = (a) : both set are clearly open. Moreover they are complement of each other so they are
also closed.



