SOLUTION HOMEWORK 2

- (1) Recall that a region is a complex set that is open and connected. True or false? If true, prove it. If false, give a counterexample.
 - (a) The intersection of two regions is a region.
 - (b) If two regions intersects, then their union is a region.

Solution: In both cases, it is clear that the resulting set is open.

(a) False: consider the annulus sectors

$$M_1 = \{ re^{it} \mid r \in (1,2), \ t \in (0,3\pi/2) \}, \quad M_2 = \{ re^{it} \mid r \in (1,2), \ t \in (-\pi,\pi/2) \}.$$

- (b) True: we show that the resulting set is path-connected assuming that the two original sets M_1, M_2 are so. Let $w, z \in M_1 \cup M_2$. Then if w and z are both in M_1 or in M_2 , there is a path from w to z since M_1 resp. M_2 is path-connected. Otherwise, WLOG assume that $w \in M_1$ and $z \in M_2$. Let $w' \in M_1 \cap M_2$ which is not empty by hypothesis. Then $w' \in M_1$ resp. M_2 implies that there is a path from w to w' resp. from w' to w'
- (2) (a) Let $f, g : \mathbb{C} \to \mathbb{C}$. Prove that $f \sim g$ as $z \to z_0$ if and and only if $\lim_{z \to z_0} \frac{f(z)}{g(z)} = 1$.
 - (b) Let $f, g : \mathbb{R} \to \mathbb{R}_{>0}$ be two functions such that $f \sim g$ as $x \to \infty$ and such that $f(x), g(x) \to \infty$ as $x \to \infty$. Prove that $\log(f) \sim \log(g)$ as $x \to \infty$.
 - (c) If $f \sim g$ as $z \to z_0$, is it true that $e^f \sim e^g$?
 - (d) Let $f, g: \mathbb{C} \to \mathbb{C}$ holomorphic. Show that (f+g)' = f'g + fg' using the following definition of derivative:

$$f(z+h) = f(z) + hf'(z) + o(h)$$
 as $h \to 0$.

Solution:

(a) We have

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = 1 + \lim_{z \to z_0} \frac{f(z) - g(z)}{g(z)}.$$

The limit is equal to 1 if and only if f - g = o(g).

(b) We have

$$\log(f(x)) - \log(g(x)) = \log\left(\frac{f(x)}{g(x)}\right) = \log\left(1 + \frac{f(x) - g(x)}{g(x)}\right)$$

Since $\log(1+x) = O(x)$, we have

$$\log(f(x)) - \log(g(x)) = O\left(\frac{f(x) - g(x)}{g(x)}\right) = o(1).$$

Since $g(x) \to \infty$, this is o(g).

(c) False: consider $f(z) = z^2$ and $g(z) = z^2 + z$ as $z \to \infty$. Then f(z) - g(z) = z = o(g(z)) but $e^{g(z)} = e^z f(z)$ and so $\lim_{z \to \infty} \frac{f(z)}{g(z)} = 0$.

(d) We compute

$$f(z+h)g(z+h) = (f(z) + hf'(z) + o(h))(g(z) + hg'(z) + o(h))$$

$$= f(z)g(z) + h(f'(z)g(z) + f(z)g'(z))$$

$$+ h^2f'(z)g'(z) + o(h)(f(z) + hf'(z) + g(z) + hg'(z) + o(h)).$$

Since z is fixed and $h \to 0$, everything on the second line is o(h). We get

$$f(z+h)g(z+h) = f(z)g(z) + h(f'(z)g(z) + f(z)g'(z)) + o(h).$$

That is (fg)' = f'g + fg'.

- (3) Let $(x_n), (y_n) \subseteq \mathbb{R}$ be two sequences of real numbers.
 - (a) Show that $\limsup_{n\to\infty} (x_n+y_n) \leq (\limsup_{n\to\infty} x_n) + (\limsup_{n\to\infty} y_n)$. Is there a similar formula for $\liminf_{n\to\infty} (x_n+y_n)$?
 - (b) Give an example where the inequality in (a) is strict.

Solution:

(a) By definition and subadditivity of sup, we have

$$\lim \sup_{n \to \infty} (x_n + y_n) = \lim_{m \to \infty} \sup_{n \ge m} (x_n + y_n)$$

$$\leq \lim_{m \to \infty} (\sup_{n \ge m} x_n + \sup_{n \ge m} y_n)$$

$$\leq \lim_{m \to \infty} \sup_{n \ge m} x_n + \lim_{m \to \infty} \sup_{n \ge m} y_n.$$

Yes, $\liminf_{n\to\infty} (x_n+y_n) \ge (\liminf_{n\to\infty} x_n) + (\liminf_{n\to\infty} y_n)$. The proof is the same as for \limsup using superadditivity of \inf .

- (b) For example $x_n = (-1)^n$, $y_n = -(-1)^n$. Then $x_n + y_n = 0$ for all n but $\limsup_{n \to \infty} y_n = 1$.
- (4) Let $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ amd $g(z) = \sum_{n=0}^{\infty} b_n (z-a)^n$ be two power series with positive radius of convergence. Assume that $f(z_k) = g(z_k)$ for a sequence of complex numbers $z_k \neq a$ that converges to a. Prove that $a_n = b_n$ for all n. Hint: show that $a_0 = b_0$, then use induction on n.

Solution: Since f and g have both a positive radius of convergence, they are continuous. In particular, f(a) = g(a). Therefore $a_0 = b_0$. Then $f(z) - a_0 = (z - a)f_1(z)$ for the function $f_1(z) = \sum_{n=0}^{\infty} a_{n+1}(z-a)^n$ with the same radius of convergence. Define $g_1(z)$ in the same fashion. Clearly

$$f_1(z_k) = \frac{f(z_k) - a_0}{(z_k - a)} = \frac{g(z_k) - b_0}{(z_k - a)} = g_1(z_k).$$

So f_1 and g_1 satisfy the same conditions as f and g. Therefore $a_1 = b_1$. By induction, we see that $a_n = b_n$ for all n.

- (5) Determine the domain and range of the following complex functions:
 - (a) $f(z) = e^z$.

(b)
$$f(z) = \frac{\sin(z)}{\cos(z)}$$
.

Hint: for (a), use Cartesian coordinates for z and determines the polar coordinates of f(z). For (b), express f(z) in terms of the exponential function and use (a).

Solution:

- (a) The domain of f is \mathbb{C} . Let z=x+iy. Then $e^z=e^xe^{iy}$. Given $w=re^{it}\in\mathbb{C}$ with $r\neq 0$, consider $x = \log(r)$ and y = t. We see that $e^z = w$. Moreover, if $e^z = 0$, then $e^{\operatorname{Re}(z)} = 0$ which is not possible, by classical analysis. So e^z has range $\mathbb{C}\setminus\{0\}$.
- (b) We have

$$if(z) = \frac{e^{iz} - e^{-iz}}{e^{iz} + e^{-iz}} = \frac{e^{2iz} - 1}{e^{2iz} + 1} = 1 - \frac{2}{e^{2iz} + 1}.$$

We see that the domain of f is given by the z such that $e^{2iz} \neq -1$, that is $z \neq \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$. The function $e^{2iz} + 1$ has range $\mathbb{C} \setminus \{1\}$ by the last exercise. So $\frac{2}{e^{2iz+1}}$ has range $\mathbb{C}\setminus\{0,2\}$ and f has range $\mathbb{C}\setminus\{-i,i\}$.

(6) Let $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ be a power series with positive radius of convergence R. Show that f(z) has an antiderivative in D(a,R), i.e. there exists a holomorphic function $g:D(a,R)\to\mathbb{C}$ such that g'(z) = f(z). Hint: the antiderivative is another power series.

Solution: Consider the power series

$$g(z) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (z-a)^{n+1}.$$

Differentiating g(z) termwise, we obtain f(z). By a theorem seen in class, the radius of convergence of g and f are the same, g is holomorphic and g'(z) = f(z).

- (7) For each of the following series, the radius of convergence is R=1. However, they behave differently for |z| = R = 1. Show that:
 - (a) The power series $\sum nz^n$ does not converge on any point of the unit circle.
 - (b) The power series $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$ converges at any point of the unit circle.
 - (c) We know from calculus that the power series $\sum \frac{z^n}{n}$ converges at z=-1 and diverges at z=1. What happens for z=i?

Solution:

- (a) For |z|=1, the term nz has absolute value going to infinity, so the series isn't a Cauchy
- (b) If |z| = 1, then $\left|\sum \frac{z^n}{n^2}\right| \le \sum \frac{1}{n^2} = \frac{\pi^2}{6}$. In other words, the series converges absolutely. (c) Splitting between real and imaginary parts, that is between even and odd indices, we have

$$\sum_{n=1}^{\infty} \frac{i^n}{n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{2n} + i \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}.$$

Both terms are alternating series with decreasing coefficients. By a theorem of analysis, they both converge. More precisely, we have

$$\sum_{n=1}^{\infty} \frac{i^n}{n} = -\frac{\log(2)}{2} + i\frac{\pi}{4}.$$

(8) Consider the series $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$. Use the multiplication of power series to show that $e^w \cdot e^z = e^{w+z}$. Hint: group terms by total power in w and z.

Solution: We compute

$$\left(\sum_{m=0}^{\infty} \frac{w^m}{m!}\right) \left(\sum_{n=0}^{\infty} \frac{z^n}{n!}\right) = \sum_{k=0}^{\infty} \sum_{m+n=k} \frac{w^m z^n}{m! n!}$$

$$= \sum_{k=0}^{\infty} \frac{1}{k!} \sum_{m+n=k} \frac{(m+n)!}{m! n!} w^m z^n$$

$$= \sum_{k=0}^{\infty} \frac{(wz)^k}{k!}.$$

We used the binomial theorem on the last line.