
SOLUTION HOMEWORK 2

(1) Recall that a region is a complex set that is open and connected. True or false? If true, prove
it. If false, give a counterexample.
(a) The intersection of two regions is a region.
(b) If two regions intersects, then their union is a region.

Solution: In both cases, it is clear that the resulting set is open.
(a) False: consider the annulus sectors

M1 = {reit | r ∈ (1, 2), t ∈ (0, 3π/2)}, M2 = {reit | r ∈ (1, 2), t ∈ (−π, π/2)}.
(b) True: we show that the resulting set is path-connected assuming that the two original sets

M1,M2 are so. Let w, z ∈ M1 ∪M2. Then if w and z are both in M1 or in M2, there is a
path from w to z since M1 resp. M2 is path-connected. Otherwise, WLOG assume that
w ∈ M1 and z ∈ M2. Let w

′ ∈ M1 ∩M2 which is not empty by hypothesis. Then w′ ∈ M1

resp. M2 implies that there is a path from w to w′ resp. from w′ to z. Joining these two
paths gives a path from w to z.

(2) (a) Let f, g : C → C. Prove that f ∼ g as z → z0 if and and only if limz→z0
f(z)
g(z) = 1.

(b) Let f, g : R → R>0 be two functions such that f ∼ g as x → ∞ and such that f(x), g(x) →
∞ as x → ∞. Prove that log(f) ∼ log(g) as x → ∞.

(c) If f ∼ g as z → z0, is it true that ef ∼ eg?
(d) Let f, g : C → C holomorphic. Show that (f+g)′ = f ′g+fg′ using the following definition

of derivative:

f(z + h) = f(z) + hf ′(z) + o(h) as h → 0.

Solution:
(a) We have

lim
z→z0

f(z)

g(z)
= 1 + lim

z→z0

f(z)− g(z)

g(z)
.

The limit is equal to 1 if and only if f − g = o(g).
(b) We have

log(f(x))− log(g(x)) = log

(
f(x)

g(x)

)
= log

(
1 +

f(x)− g(x)

g(x)

)
Since log(1 + x) = O(x), we have

log(f(x))− log(g(x)) = O

(
f(x)− g(x)

g(x)

)
= o(1).

Since g(x) → ∞, this is o(g).
(c) False: consider f(z) = z2 and g(z) = z2 + z as z → ∞. Then f(z) − g(z) = z = o(g(z))

but eg(z) = ezf(z) and so limz→∞
f(z)
g(z) = 0.
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(d) We compute

f(z + h)g(z + h) = (f(z) + hf ′(z) + o(h))(g(z) + hg′(z) + o(h))

= f(z)g(z) + h(f ′(z)g(z) + f(z)g′(z))

+ h2f ′(z)g′(z) + o(h)(f(z) + hf ′(z) + g(z) + hg′(z) + o(h)).

Since z is fixed and h → 0, everything on the second line is o(h). We get

f(z + h)g(z + h) = f(z)g(z) + h(f ′(z)g(z) + f(z)g′(z)) + o(h).

That is (fg)′ = f ′g + fg′.

(3) Let (xn), (yn) ⊆ R be two sequences of real numbers.
(a) Show that lim supn→∞(xn+ yn) ≤ (lim supn→∞ xn)+ (lim supn→∞ yn). Is there a similar

formula for lim infn→∞(xn + yn)?
(b) Give an example where the inequality in (a) is strict.

Solution:
(a) By definition and subadditivity of sup, we have

lim sup
n→∞

(xn + yn) = lim
m→∞

sup
n≥m

(xn + yn)

≤ lim
m→∞

( sup
n≥m

xn + sup
n≥m

yn)

≤ lim
m→∞

sup
n≥m

xn + lim
m→∞

sup
n≥m

yn.

Yes, lim infn→∞(xn + yn) ≥ (lim infn→∞ xn) + (lim infn→∞ yn). The proof is the same as
for lim sup using superadditivity of inf.

(b) For example xn = (−1)n, yn = −(−1)n. Then xn + yn = 0 for all n but lim supn→∞ xn =
lim supn→∞ yn = 1.

(4) Let f(z) =
∑∞

n=0 an(z − a)n amd g(z) =
∑∞

n=0 bn(z − a)n be two power series with positive
radius of convergence. Assume that f(zk) = g(zk) for a sequence of complex numbers zk ̸= a
that converges to a. Prove that an = bn for all n. Hint: show that a0 = b0, then use induction
on n.

Solution: Since f and g have both a positive radius of convergence, they are continuous. In
particular, f(a) = g(a). Therefore a0 = b0. Then f(z) − a0 = (z − a)f1(z) for the function
f1(z) =

∑∞
n=0 an+1(z − a)n with the same radius of convergence. Define g1(z) in the same

fashion. Clearly

f1(zk) =
f(zk)− a0
(zk − a)

=
g(zk)− b0
(zk − a)

= g1(zk).

So f1 and g1 satisfy the same conditions as f and g. Therefore a1 = b1. By induction, we see
that an = bn for all n.

(5) Determine the domain and range of the following complex functions:
(a) f(z) = ez.

(b) f(z) =
sin(z)

cos(z)
.

Hint: for (a), use Cartesian coordinates for z and determines the polar coordinates of f(z).
For (b), express f(z) in terms of the exponential function and use (a).

Solution:
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(a) The domain of f is C. Let z = x+ iy. Then ez = exeiy. Given w = reit ∈ C with r ̸= 0,
consider x = log(r) and y = t. We see that ez = w. Moreover, if ez = 0, then eRe(z) = 0
which is not possible, by classical analysis. So ez has range C\{0}.

(b) We have

if(z) =
eiz − e−iz

eiz + e−iz
=

e2iz − 1

e2iz + 1
= 1− 2

e2iz + 1
.

We see that the domain of f is given by the z such that e2iz ̸= −1, that is z ̸= π
2 + kπ,

k ∈ Z. The function e2iz + 1 has range C\{1} by the last exercise. So 2
e2iz+1 has range

C\{0, 2} and f has range C\{−i, i}.

(6) Let f(z) =
∑∞

n=0 an(z−a)n be a power series with positive radius of convergence R. Show that
f(z) has an antiderivative in D(a,R), i.e. there exists a holomorphic function g : D(a,R) → C
such that g′(z) = f(z). Hint: the antiderivative is another power series.

Solution: Consider the power series

g(z) =

∞∑
n=0

an
n+ 1

(z − a)n+1.

Differentiating g(z) termwise, we obtain f(z). By a theorem seen in class, the radius of con-
vergence of g and f are the same, g is holomorphic and g′(z) = f(z).

(7) For each of the following series, the radius of convergence is R = 1. However, they behave
differently for |z| = R = 1. Show that:
(a) The power series

∑
nzn does not converge on any point of the unit circle.

(b) The power series
∑

zn

n2 converges at any point of the unit circle.

(c) We know from calculus that the power series
∑

zn

n converges at z = −1 and diverges at
z = 1. What happens for z = i?

Solution:
(a) For |z| = 1, the term nz has absolute value going to infinity, so the series isn’t a Cauchy

sequence and can’t converge.

(b) If |z| = 1, then
∣∣∑ zn

n2

∣∣ ≤∑ 1
n2 = π2

6 . In other words, the series converges absolutely.
(c) Splitting between real and imaginary parts, that is between even and odd indices, we have

∞∑
n=1

in

n
=

∞∑
n=1

(−1)n

2n
+ i

∞∑
n=0

(−1)n

2n+ 1
.

Both terms are alternating series with decreasing coefficients. By a theorem of analysis,
they both converge. More precisely, we have

∞∑
n=1

in

n
= − log(2)

2
+ i

π

4
.

(8) Consider the series ez =
∑∞

n=0
zn

n! . Use the multiplication of power series to show that ew ·ez =
ew+z. Hint: group terms by total power in w and z.
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Solution: We compute( ∞∑
m=0

wm

m!

)( ∞∑
n=0

zn

n!

)
=

∞∑
k=0

∑
m+n=k

wmzn

m!n!

=

∞∑
k=0

1

k!

∑
m+n=k

(m+ n)!

m!n!
wmzn

=

∞∑
k=0

(wz)k

k!
.

We used the binomial theorem on the last line.


