SOLUTION HOMEWORK 3

(1) Compute the length of the following curves.

(a) The segment [w, z] for $w, z \in \mathbb{C}$.

(b) The circle of center $z \in \mathbb{C}$ and radius r > 0.

(c) The curve $u:[0,44]\to\mathbb{C}$ given by $u(t)=t+it^{3/2}$.

Solution:

(a) We parametrize the segment by

$$u:[0,1]\to\mathbb{C},\ t\mapsto (1-t)w+tz.$$

We have u'(t) = -w + z. Then

$$\ell(u) = \int_0^1 |u'(t)| dt = |z - w| \int_0^1 dt = |z - w|.$$

(b) We parametrize the circle by

$$u:[0,2\pi]\to\mathbb{C},\ t\mapsto z+re^{it}.$$

We have $u'(t) = rie^{it}$. Then

$$\ell(u) = \int_0^{2\pi} |u'(t)| \, dt = r \int_0^{2\pi} dt = 2\pi r.$$

(c) We have $u'(t) = 1 + i\frac{3}{2}t^{1/2}$. Then

$$\ell(u) = \int_0^4 4\sqrt{1 + \frac{9t}{4}} dt = \frac{2}{3} \cdot \frac{4}{9} \left(1 + \frac{9}{4}t \right)^{3/2} \bigg|_0^{44} = \frac{2}{3} \cdot \frac{4}{9} (1 + 99)^{3/2} = \frac{8}{27} (1000 - 1) = 296.$$

(2) Let $f(z_0 + h) = o(1)$ as $h \to 0$. Show that

$$\int_{[z_0, z_0 + h]} f = o(h)$$

for h small enough.

Solution: Recall that $f(z_0 + h) = o(1)$ as $h \to 0$ means that

$$\forall \epsilon > 0 \ \exists \delta > 0 : \ |h| < \delta \Rightarrow |f(z_0 + h)| < \epsilon.$$

Also, $o(h) = h \cdot o(1)$. Let $\epsilon > 0$ be fixed and $\delta > 0$ given by the above formula.

$$\left| \int_{[z_0, z_0 + h]} f \right| \le h \sup_{h' \in [0, h]} |f(z_0 + h')|.$$

If $|h| < \delta$, then $|h'| < \delta$. So $|f(z_0 + h')| < \epsilon$ and the supremum is smaller or equal to ϵ . We showed that

$$\forall \epsilon > 0 \ \exists \delta > 0 \ |h| < \delta \Rightarrow \left| \int_{[z_0, z_0 + h]} f \right| \le h\epsilon,$$

that is the integral is o(h).

(3) Compute

$$\int_{|z|=1} \left(\frac{1}{z} + e^z\right) dz \text{ and } \int_{|z-2|=1} \left(\frac{1}{z} + e^z\right) dz.$$

Hint: the only computation of integral that you need was done in class.

Solution: We saw that

$$\int_{|z|=1} \frac{1}{z} dz = 2\pi i.$$

Moreover, e^z is holomorphic on \mathbb{C} . By Cauchy's theorem:

$$\int_{|z|=1} \left(\frac{1}{z} + e^z\right) dz = \int_{|z|=1} \frac{1}{z} dz + \int_{|z|=1} e^z dz = 2\pi i + 0.$$

For the second integral, note that $\frac{1}{z}$ is holomorphic in the interior of the circle |z-2|=1. So by Cauchy's theorem:

$$\int_{|z-2|=1} \left(\frac{1}{z} + e^z \right) dz = 0.$$

(4) Let γ be the positively oriented circle |z-1|=1. Show that

$$\int_{\gamma} \frac{dz}{z^2 - 1} = i\pi.$$

Hint: decompose the integrand into partial fractions.

Solution: We have

$$\frac{1}{z^2 - 1} = \frac{1}{2} \left(\frac{1}{z - 1} - \frac{1}{z + 1} \right).$$

The second part of the integrand is holomorphic in the interior of the circle γ . By Cauchy's theorem and an integral computed in class:

$$\int_{\gamma} \frac{dz}{z^2 - 1} = \frac{1}{2} \int_{\gamma} \frac{dz}{z - 1} - \frac{1}{2} \int_{\gamma} \frac{dz}{z + 1} = \pi i + 0.$$

(5) Let γ be the positively oriented circle |z|=1. Compute

$$\int_{\mathbb{R}^2} \frac{e^z}{z^4} dz.$$

Hint: use the power series of e^z and split between a part that is holomorphic on $\mathbb C$ and the rest.

Solution: We have

$$\frac{e^z}{z^4} = \frac{1}{z^4} + \frac{1}{z^3} + \frac{1}{2z^2} + \frac{1}{6z} + \sum_{n=0}^{\infty} \frac{z^n}{(n+4)!}.$$

The series on the RHS is holomorphic on $\mathbb C$ since

$$\lim_{n \to \infty} ((n+4)!)^{1/n} = \lim_{n \to \infty} (n!)^{1/n} \cdot \lim_{n \to \infty} [(n+1)(n+2)(n+3)(n+4)]^{1/n} = \infty.$$

We compute in class that the integral $\int_{\gamma} \frac{1}{z^n} dz = 0$ for $n \geq 2$ and it is $2\pi i$ for n = 1. By Cauchy's theorem and the integrals computed in class:

$$\int_{\gamma} \frac{e^z}{z^4} dz = \int_{\gamma} \left(\frac{1}{z^4} + \frac{1}{z^3} + \frac{1}{2z^2} \right) dz + \int_{\gamma} \frac{1}{6z} dz + \int_{\gamma} \sum_{n=0}^{\infty} \frac{z^n}{(n+4)!} dz = 0 + \frac{\pi i}{3} + 0.$$

(6) Show that

$$\int_0^\infty \sin(x^2)dx = \int_0^\infty \cos(x^2)dx = \sqrt{\frac{\pi}{8}}.$$

Hint: consider the integral of e^{iz^2} on the contour given by the segment [0, R], the circle are from R to $Re^{i\pi/4}$ and the segment $[Re^{i\pi/4}, 0]$ and let $R \to \infty$.

Solution: We consider the contour given in the hint. Let γ_R be the circle arc centered at 0 from R to $Re^{i\pi/4}$. Let $f(z)=e^{iz^2}$. Then by Cauchy's theorem:

$$0 = \int_{[0,R]} f + \int_{\gamma_R} f + \int_{[Re^{i\pi/4},0]} f.$$

We parametrize γ_R by $u:[0,\pi/4], u(t)=Re^{it}$. We compute

$$\int_{\gamma_R} f = \int_0^{\pi/4} e^{iR^2 e^{2it}} Rie^{it} dt.$$

Note that $\text{Im}(e^{2it}) = \sin(2t) \ge t$ for $t \in [0, \pi/4]$ (proof: the scond derivative is non-positive on the interval so it is concave). Then

$$\begin{split} \left| \int_{\gamma_R} f \right| &\leq R \int_0^{\pi/4} \left| e^{iR^2 e^{2it}} \right| dt \\ &\leq R \int_0^{\pi/4} e^{-R^2 t} dt \\ &= -R \left. \frac{e^{-R^2 t}}{R^2} \right|_0^{\pi/4} \\ &= \frac{1 - e^{-\pi R^2/4}}{R} \, . \end{split}$$

This goes to 0 as $R \to \infty$. Therefore we have

$$0 = \int_{[0,R]} f + o(1) - \int_{[0,Re^{i\pi/4}]} f.$$

We parametrize the segments as usual

$$0 = \int_0^R e^{ix^2} dx + o(1) - \int_0^R e^{i(xe^{i\pi/4})^2} e^{i\pi/4} dx$$

Taking the limit as $R \to \infty$, we get

$$e^{i\pi/4} \int_0^\infty e^{-x^2} dx = \int_0^\infty e^{ix^2} dx = \int_0^\infty \cos(x^2) dx + i \int_0^\infty \sin(x^2) dx.$$

Recall that $\int_0^\infty e^{-x^2} dx = \frac{\sqrt{2}}{2}$. Write $\frac{\sqrt{\pi}}{2} e^{i\pi/4} = \frac{\sqrt{\pi}}{2} \frac{1+i}{\sqrt{2}} = \sqrt{\frac{\pi}{8}} (1+i)$. Taking real and imaginary parts of the above equation, we get

$$\int_0^\infty \cos(x^2)dx = \sqrt{\frac{\pi}{8}}, \quad \int_0^\infty \sin(x^2)dx = \sqrt{\frac{\pi}{8}}.$$

(7) Let $M \subseteq \mathbb{C}$ be a simply connected region and $f: M \to \mathbb{C} \setminus \{0\}$. Show that for any integer $n \ge 1$ there are exactly n functions $g: M \to \mathbb{C} \setminus \{0\}$ such that $g^n = f$. Hint: think of f(z) as $e^{h(z)}$ and g(z) as $e^{j(z)}$.

Solution: Since f is a non-vanishing function, we saw that there is a holomorphic logarithm $h: M \to \mathbb{C}$ with $e^h = f$. Then $g_k(z) = e^{h/n + 2\pi i k/n}$ is such that $g_k^n = f$ for $k = 0, \ldots, n-1$.

If g is another function such that $g^n=f$, then $g(z)\neq 0$ for all $z\in M$. Therefore, there exists $j:M\to\mathbb{C}$ with $e^j=g$. Then $e^{nj}=f=e^h$. This means that $e^{h-nj}=1$ is a constant function. Then

$$0 = (e^{h(z) - nj(z)})' = (h'(z) - nj'(z))e^{h(z) - nj(z)} \Rightarrow h'(z) = nj'(z).$$

So nj(z) = h(z) + c for some $c \in \mathbb{C}$. Clearly, $c = 2\pi i k$ for some k. Therefore $g(z) = e^{j(z) + 2\pi i k/n}$ is one of the solution g_k given above.

(8) Let γ be the positively oriented circle |z|=1 and $a,b\in\mathbb{C}$ with |a|<1<|b|. Show that

$$\int_{\gamma} \frac{dz}{(z-a)(z-b)} = \frac{2\pi i}{a-b}.$$

Hint: apply Cauchy's formula.

Solution: The function $\frac{1}{z-b}$ is holomorphic in the interior of γ . By Cauchy's formula:

$$\frac{1}{2\pi i} \int_{\gamma} \frac{dz}{(z-a)(z-b)} = \left. \frac{1}{z-b} \right|_{z=a} = \frac{1}{a-b}.$$