
SOLUTION HOMEWORK 3

(1) Compute the length of the following curves.
(a) The segment [w, z] for w, z ∈ C.

(b) The circle of center z ∈ C and radius r > 0.

(c) The curve u : [0, 44] → C given by u(t) = t+ it3/2.

Solution:
(a) We parametrize the segment by

u : [0, 1] → C, t 7→ (1− t)w + tz.

We have u′(t) = −w + z. Then

ℓ(u) =

∫ 1

0

|u′(t)| dt = |z − w|
∫ 1

0

dt = |z − w| .

(b) We parametrize the circle by

u : [0, 2π] → C, t 7→ z + reit.

We have u′(t) = rieit. Then

ℓ(u) =

∫ 2π

0

|u′(t)| dt = r

∫ 2π

0

dt = 2πr.

(c) We have u′(t) = 1 + i 32 t
1/2. Then

ℓ(u) =

∫ 4

0

4

√
1 +

9t

4
dt =

2

3
· 4
9

(
1 +

9

4
t

)3/2
∣∣∣∣∣
44

0

=
2

3

4

9
(1 + 99)3/2 =

8

27
(1000− 1) = 296.

(2) Let f(z0 + h) = o(1) as h → 0. Show that∫
[z0,z0+h]

f = o(h)

for h small enough.

Solution: Recall that f(z0 + h) = o(1) as h → 0 means that

∀ϵ > 0 ∃δ > 0 : |h| < δ ⇒ |f(z0 + h)| < ϵ.

Also, o(h) = h · o(1). Let ϵ > 0 be fixed and δ > 0 given by the above formula.∣∣∣∣∣
∫
[z0,z0+h]

f

∣∣∣∣∣ ≤ h sup
h′∈[0,h]

|f(z0 + h′)| .

If |h| < δ, then |h′| < δ. So |f(z0 + h′)| < ϵ and the supremum is smaller or equal to ϵ. We
showed that

∀ϵ > 0 ∃δ > 0 |h| < δ ⇒

∣∣∣∣∣
∫
[z0,z0+h]

f

∣∣∣∣∣ ≤ hϵ,

that is the integral is o(h).
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(3) Compute ∫
|z|=1

(
1

z
+ ez

)
dz and

∫
|z−2|=1

(
1

z
+ ez

)
dz.

Hint: the only computation of integral that you need was done in class.

Solution: We saw that ∫
|z|=1

1

z
dz = 2πi.

Moreover, ez is holomorphic on C. By Cauchy’s theorem:∫
|z|=1

(
1

z
+ ez

)
dz =

∫
|z|=1

1

z
dz +

∫
|z|=1

ezdz = 2πi+ 0.

For the second integral, note that 1
z is holomorphic in the interior of the circle |z − 2| = 1. So

by Cauchy’s theorem: ∫
|z−2|=1

(
1

z
+ ez

)
dz = 0.

(4) Let γ be the positively oriented circle |z − 1| = 1. Show that∫
γ

dz

z2 − 1
= iπ.

Hint: decompose the integrand into partial fractions.

Solution: We have
1

z2 − 1
=

1

2

(
1

z − 1
− 1

z + 1

)
.

The second part of the integrand is holomorphic in the interior of the circle γ. By Cauchy’s
theorem and an integral computed in class:∫

γ

dz

z2 − 1
=

1

2

∫
γ

dz

z − 1
− 1

2

∫
γ

dz

z + 1
= πi+ 0.

(5) Let γ be the positively oriented circle |z| = 1. Compute∫
γ

ez

z4
dz.

Hint: use the power series of ez and split between a part that is holomorphic on C and the rest.

Solution: We have

ez

z4
=

1

z4
+

1

z3
+

1

2z2
+

1

6z
+

∞∑
n=0

zn

(n+ 4)!
.

The series on the RHS is holomorphic on C since

lim
n→∞

((n+ 4)!)1/n = lim
n→∞

(n!)1/n · lim
n→∞

[(n+ 1)(n+ 2)(n+ 3)(n+ 4)]1/n = ∞.

We compute in class that the integral
∫
γ

1
zn dz = 0 for n ≥ 2 and it is 2πi for n = 1. By

Cauchy’s theorem and the integrals computed in class:∫
γ

ez

z4
dz =

∫
γ

(
1

z4
+

1

z3
+

1

2z2

)
dz +

∫
γ

1

6z
dz +

∫
γ

∞∑
n=0

zn

(n+ 4)!
dz = 0 +

πi

3
+ 0.
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(6) Show that ∫ ∞

0

sin(x2)dx =

∫ ∞

0

cos(x2)dx =

√
π

8
.

Hint: consider the integral of eiz
2

on the contour given by the segment [0, R], the circle arc
from R to Reiπ/4 and the segment [Reiπ/4, 0] and let R → ∞.

Solution: We consider the contour given in the hint. Let γR be the circle arc centered at 0

from R to Reiπ/4. Let f(z) = eiz
2

. Then by Cauchy’s theorem:

0 =

∫
[0,R]

f +

∫
γR

f +

∫
[Reiπ/4,0]

f.

We parametrize γR by u : [0, π/4], u(t) = Reit. We compute∫
γR

f =

∫ π/4

0

eiR
2e2itRieitdt.

Note that Im(e2it) = sin(2t) ≥ t for t ∈ [0, π/4] (proof: the scond derivative is non-positive on
the interval so it is concave). Then∣∣∣∣∫

γR

f

∣∣∣∣ ≤ R

∫ π/4

0

∣∣∣eiR2e2it
∣∣∣ dt

≤ R

∫ π/4

0

e−R2tdt

= −R
e−R2t

R2

∣∣∣∣∣
π/4

0

=
1− e−πR2/4

R
.

This goes to 0 as R → ∞. Therefore we have

0 =

∫
[0,R]

f + o(1)−
∫
[0,Reiπ/4]

f.

We parametrize the segments as usual:

0 =

∫ R

0

eix
2

dx+ o(1)−
∫ R

0

ei(xe
iπ/4)2eiπ/4dx

Taking the limit as R → ∞, we get

eiπ/4
∫ ∞

0

e−x2

dx =

∫ ∞

0

eix
2

dx =

∫ ∞

0

cos(x2)dx+ i

∫ ∞

0

sin(x2)dx.

Recall that
∫∞
0

e−x2

dx =
√
2
2 . Write

√
π
2 eiπ/4 =

√
π
2

1+i√
2
=

√
π
8 (1+i). Taking real and imaginary

parts of the above equation, we get∫ ∞

0

cos(x2)dx =

√
π

8
,

∫ ∞

0

sin(x2)dx =

√
π

8
.

(7) Let M ⊆ C be a simply connected region and f : M → C\{0}. Show that for any integer n ≥ 1
there are exactly n functions g : M → C\{0} such that gn = f . Hint: think of f(z) as eh(z)

and g(z) as ej(z).

Solution: Since f is a non-vanishing function, we saw that there is a holomorphic logarithm
h : M → C with eh = f . Then gk(z) = eh/n+2πik/n is such that gnk = f for k = 0, . . . , n − 1.
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If g is another function such that gn = f , then g(z) ̸= 0 for all z ∈ M . Therefore, there exists
j : M → C with ej = g. Then enj = f = eh. This means that eh−nj = 1 is a constant function.
Then

0 = (eh(z)−nj(z))′ = (h′(z)− nj′(z))eh(z)−nj(z) ⇒ h′(z) = nj′(z).

So nj(z) = h(z)+c for some c ∈ C. Clearly, c = 2πik for some k. Therefore g(z) = ej(z)+2πik/n

is one of the solution gk given above.

(8) Let γ be the positively oriented circle |z| = 1 and a, b ∈ C with |a| < 1 < |b|. Show that∫
γ

dz

(z − a)(z − b)
=

2πi

a− b
.

Hint: apply Cauchy’s formula.

Solution: The function 1
z−b is holomorphic in the interior of γ. By Cauchy’s formula:

1

2πi

∫
γ

dz

(z − a)(z − b)
=

1

z − b

∣∣∣∣
z=a

=
1

a− b
.


