
SOLUTION HOMEWORK 4

(1) Let w ∈ D(0, 1). Consider the function

gw(z) :=
w − z

1− w̄z

on D(0, 1). Show that gw is a holomorphic bijection from D(0, 1) to D(0, 1). Hint: verify that
gw maps D(0, 1) to itself by proving (w−z)(w̄−z̄) < (1−w̄z)(1−zw̄). Verify that gw◦gw(z) = z
for any z ∈ D(0, 1).

Solution: Note that 0 < (1 − |w|2)(1 − |z|2) for all w, z ∈ D(0, 1). Expanding, we see that

|w|2 + |z|2 < 1 + |wz|2. We have

(w − z)(w̄ − z̄) = |w|2 + |z|2 − (w̄z + wz̄) < 1 + |wz|2 − (w̄z + wz̄) = (1− w̄z)(1− zw̄).

We deduce that

|gw(z)|2 = gw(z)gw(z) =
(w − z)(w̄ − z̄)

(1− w̄z)(1− wz̄)
< 1.

So gw maps D(0, 1) to itself. We also have

gw ◦ gw(z) =
w − w−z

1−w̄z

1− w̄ w−z
1−w̄z

=
w(1− w̄z)− (w − z)

(1− w̄z)− w̄(w − z)

=
z − |w|2 z
1− |w|2

= z.

So gw is a bijection.

(2) Let f : D(a, r) → C be a holomorphic function. Suppose that f has no holomorphic extension
to any disk D(a,R) with R > r. Show that r is the radius of convergence of the Taylor series
of f at a. Hint: the problem has a quick solution if you quote the right theorems from the class.
Show that the radius of convergence is at least r. Then show it can’t be bigger than r.

Solution: Let ρ be the radius of convergence of the Taylor series of f . By Chapter 2, Theorem
4.4 in the book, f(z) is equal to its Taylor series on D(a, r) so ρ ≥ r. By Theorem 2.8 in the
notes, the Taylor series defines a holomorphic function on D(a, ρ). Therefore, by the initial
assumption on f(z), we can’t have ρ > r. So ρ = r.

(3) Let f : D(a, r) → C be a holomorphic function. show that f has a holomorphic extension to

C if and only if n

√∣∣f (n)(a)
∣∣ = o(n) as n → ∞. Hint: combine the theorem on holomorphicity

of power series with the Cauchy-Hadamard formula.

Solution: We know that f can be written as a power series in D(a, r):

f(z) =

∞∑
n=0

an(z − a)n.
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Recall that an = f(n)(a)
n! . Note that (by the last exercise) f can be extended to C if and only if

the radius of convergence R of the Taylor series is infinite. The radius of convergence is given
by

R−1 = lim sup
n→∞

n
√
|an| = lim sup

n→∞

n

√∣∣f (n)(a)
∣∣

n
√
n!

.

The Stirling formula tells us that n
√
|n!| ∼ n

e as n → ∞. In particular, R−1 = 0 if and only if
n
√
|f(n)(a)|

n → 0 as n → ∞, i.e. n

√∣∣f (n)(a)
∣∣ = o(n). Then

f has an extension to C ⇔ R = ∞ ⇔ lim sup
n→∞

n
√
|an| = 0 ⇔ n

√∣∣f (n)(a)
∣∣ = o(n).

(4) Prove the Cauchy inequalities: for a holomorphic function f : M → C on a region M and
D̄(z0, R) ⊆ M , we habe ∣∣∣f (n)(z0)

∣∣∣ ≤ n! ∥f∥∂D(z0,R)

Rn

where ∥f∥∂D(z0,R) = supz∈∂D(z0,R) |f(z)| denote the supremum norm of f on ∂D(z0, R).

Solution: By Cauchy’s formula, we have∣∣∣f (n)(z0)
∣∣∣ = n!

2π

∣∣∣∣∣
∫
∂D(z0,R)

f(z)

(z − z0)n+1
dz

∣∣∣∣∣
≤ n!

2π

∫
∂D(z0,R)

|f(z)|
|z − z0|n+1 dz

≤ n!

2π

2πR

Rn+1
∥f∥∂D(z0,R) .

We used that |z − z0| = R on the contour and the definition of the supremum norm.

(5) Let f : D(a,R) → C be a holomorphic function. Show that the range of f has diameter at
least 2R |f ′(a)|. Hint: consider g(z) = f(a + z) − f(a − z) and estimate g′(0) via Cauchy’s
inequalities.

Solution: Let g(z) = f(a + z) − f(a − z). We have g′(0) = 2f ′(a). Consider 0 < r < R. By
Cauchy’s inequalities, we have

|g′(0)| ≤
∥g∥∂D(a,r)

r
=

supz∈∂D(a,r) |f(a+ z)− f(a− z)|
r

.

We deduce that

sup
w,z∈D(z,R)

|f(z)− f(w)| ≥ sup
z∈∂D(a,r)

|f(a+ z)− f(a− z)| ≥ r |g′(0)| = 2r |f ′(a)|

for all 0 < r < R. Since the left-hand side doesn’t depend on r, we can take the limit as r → R:

sup
w,z∈D(z,R)

|f(z)− f(w)| ≥ 2R |f ′(a)| .

(6) Let n > 0 be an integer and f : C → C be an entire function such that |f(z)/zn| → 0
as |z| → ∞. Show that z is a polynomial of degree less than n. Hint: mimic the proof of
Liouville’s theorem, i.e. bound the n-th coefficient of the Taylor series using Cauchy’s formula.
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Solution: By hypothesis |f(z)| = o(zn) as |z| → ∞. We know that f is given by its Taylor
series at 0: f(z) =

∑∞
m=0 amzm for all z ∈ C. Using the Cauchy inequalities, we have

am =
f (m)(0)

m!
≤

∥f∥∂D(z0,R)

Rm
= o(Rn−m)

as R → ∞. If n ≤ m, then am = o(1) as R → ∞, so am = 0. Therefore, only the first n − 1
coefficients can be non-zero and f is a polynomial of degree less than n.

(7) Let f : C → C be an entire function mapping R to R. Show that if z is a zero of f , then so is

z̄. Hint: apply the identity theorem (Chapter 2, Corollary 4.9 in the book) to f(z) and f(z̄).

We know that f is given by its Taylor series at 0: f(z) =
∑∞

n=0 anz
n for all z ∈ C. Let

g(z) = f(z̄). We compute

g(z) =

∞∑
n=0

anz̄n =

∞∑
n=0

ānz
n.

By the Cauchy-Hadamard formula, g defines a holomorphic function on C. Moreover f(z) =
g(z) for z ∈ R. In particular, f( 1n ) = g( 1n ). By the identity theorem, we have f = g. Now,
consider z a zero of f . Then

f(z̄) = g(z) = f(z) = 0̄ = 0.

Note: we also proved that f(z) maps R to R if and only if its Taylor coefficients are real.

(8) Is there a holomorphic function on a region containing the origin such that:
(a) f( 1n ) =

1
2n+1 .

(b) f( 1n ) = f(− 1
n ) =

1
2n+1 .

Solution:
(a) Let z = 1

n , so that n = 1
z . We want that

f(z) =
1

2 1
z + 1

=
z

z + 2
.

This function is defined for z ∈ C\{−2}.
(b) Note that f(− 1

n ) = − 1
2n−1 ̸= 1

2n+1 . Suppose that a function g satisfies the condition

of the exercise. Then f( 1n ) = g( 1n ) and 0 is in the domain of f and g. By the identity
theorem, we must have f = g. So no such function exists.


