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SOLUTION HOMEWORK 4

Let w € D(0,1). Consider the function
w—z

gu(2) = 1 —wz

on D(0,1). Show that g, is a holomorphic bijection from D(0,1) to D(0,1). Hint: verify that
gw maps D(0,1) to itself by proving (w—2z)(w—2) < (1—wz)(1—2w). Verify that g,o0g,(z) = =
for any z € D(0,1).

Solution: Note that 0 < (1 — |w|*)(1 — |2|?) for all w,z € D(0,1). Expanding, we see that
lw|® + |2|° < 1+ Jwz|*. We have
(w—2)( —2) = |w]* + |2|* — (02 + wz) < 1 + |wz]* — (0z + wz) = (1 — w2)(1 — 2w).

‘We deduce that

(w—z)(w - 2)
1 —wz)(1 —w2)

2 < 1.

190 (2)° = gu(2)gu(z) = (

So g maps D(0,1) to itself. We also have

w—z
9 0 ul2) = 1=
w w T o w—z

1 wl—wz

w(l —wz) — (w—z)

(1 —wz) — w(w — 2)
2
z—|w|” z
1—Jwl”
=z

So gy, is a bijection.

Let f: D(a,r) — C be a holomorphic function. Suppose that f has no holomorphic extension
to any disk D(a, R) with R > r. Show that r is the radius of convergence of the Taylor series
of f at a. Hint: the problem has a quick solution if you quote the right theorems from the class.
Show that the radius of convergence is at least r. Then show it can’t be bigger than r.

Solution: Let p be the radius of convergence of the Taylor series of f. By Chapter 2, Theorem
4.4 in the book, f(z) is equal to its Taylor series on D(a,r) so p > r. By Theorem 2.8 in the
notes, the Taylor series defines a holomorphic function on D(a, p). Therefore, by the initial
assumption on f(z), we can’t have p > r. So p =r.

Let f: D(a,r) — C be a holomorphic function. show that f has a holomorphic extension to

C if and only if {/|f( (a)’ = o(n) as n — oo. Hint: combine the theorem on holomorphicity
of power series with the Cauchy-Hadamard formula.

Solution: We know that f can be written as a power series in D(a,r):

fz)= Z an(z —a)”.
n=0
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(n)
Recall that a, = fT,(a) Note that (by the last exercise) f can be extended to C if and only if
the radius of convergence R of the Taylor series is infinite. The radius of convergence is given
by

R =1 an| =1i Y]
— S = S .
el V= T

The Stirling formula tells us that {/|n!| ~ 2 as n — co. In particular, R~! =0 if and only if

n (n)(q
M — 0asn— o0, ie ¥ ’f(”)(a)‘ = o(n). Then

n

f has an extension to C & R = 0o < limsup {/|a,| =0 < {/|f)(a)| = o(n).
n—oo

Prove the Cauchy inequalities: for a holomorphic function f : M — C on a region M and

D(zp, R) C M, we habe
n!
’f(")(zo)‘ < ”f';lz(m,R)
where || fl|5p .o, r) = SUPzcoD(z0,r) |/ (2)] denote the supremum norm of f on dD(z, R).

Solution: By Cauchy’s formula, we have
/ ey,
dD(z0,R) (2 — 20)

< Q’/ |f(2)] &
=27 Jop(zo.m) |2 — 20"t

n! 2R
o RiAL Hf”aD(zo,R) :

n!

‘f(n)(zo)’ =90

<
We used that |z — 29| = R on the contour and the definition of the supremum norm.
Let f : D(a,R) — C be a holomorphic function. Show that the range of f has diameter at

least 2R |f'(a)|. Hint: consider g(z) = f(a + z) — f(a — z) and estimate ¢'(0) via Cauchy’s
inequalities.

Solution: Let g(z) = f(a + z) — f(a — z). We have ¢’(0) = 2f’(a). Consider 0 < r < R. By
Cauchy’s inequalities, we have

||g||8Dar SUP.ecoD(a,r |f(a+z)—f(a—z)|
g (0)] < ot = ——eeRlen -

r r
‘We deduce that

sup |f(z) = f(w)| = sup [fla+2z)—fla—z)|=7]g'(0)]=2r|f(a)l
w,z€D(z,R) z€0D(a,r)

for all 0 < r < R. Since the left-hand side doesn’t depend on 7, we can take the limit as r — R:

sup  [f(z) = f(w)] = 2R |f(a)].
R)

w,z€D(z,

Let n > 0 be an integer and f : C — C be an entire function such that |f(z)/z"] — 0
as |z| — oo. Show that z is a polynomial of degree less than n. Hint: mimic the proof of
Liouville’s theorem, i.e. bound the n-th coefficient of the Taylor series using Cauchy’s formula.
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Solution: By hypothesis |f(z)] = o(z") as |z| — co. We know that f is given by its Taylor

series at 0: f(z) = Y. _gamz™ for all z € C. Using the Cauchy inequalities, we have

_ £ (0) < 1 l0D(z0,R) Y
m! R™

as R — oo. If n < m, then a,,, = o(1) as R — 00, 80 a,, = 0. Therefore, only the first n — 1

coeflicients can be non-zero and f is a polynomial of degree less than n.

(R"=)

m

Let f: C — C be an entire function mapping R to R. Show that if z is a zero of f, then so is

Z. Hint: apply the identity theorem (Chapter 2, Corollary 4.9 in the book) to f(z) and f(Z).

We know that f is given by its Taylor series at 0: f(z) = Y.~ janz" for all z € C. Let
g(z) = f(z). We compute

oo oo
g(z) = Zanén = Zdnz".
n=0 n=0

By the Cauchy-Hadamard formula, g defines a holomorphic function on C. Moreover f(z) =
g(z) for z € R. In particular, f(%) = g(%) By the identity theorem, we have f = g. Now,
consider z a zero of f. Then

f(2)=g(z)=fz) =0=0.

Note: we also proved that f(z) maps R to R if and only if its Taylor coefficients are real.

Is there a holomorphic function on a region containing the origin such that:
(a) f(;) = 2n1+1'
(b) f(3)=Ff(=3) = 5057

Solution:
(a) Let z= 1, so that n = 1. We want that

1 z
IO ==

This function is defined for z € C\{—-2}.

(b) Note that f(f%) = anl_l 2n1+1. Suppose that a function g satisfies the condition
of the exercise. Then f(%) = g(%) and 0 is in the domain of f and g. By the identity
theorem, we must have f = g. So no such function exists.




