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SOLUTION 5

Let f be an entire function such that f(z + 1) = f(z) and f(z+¢) = f(z) for all z € C. Show
that f is constant.

Solution: By induction, we have f(z) = f(2) where Z is the unique complex number in
[0,1)% such that z — Z has integral real and imaginary parts. Moreover, [0,1]? is compact so
f is bounded by a constant M > 0 on it. Hence |f(Z)| < M. In conclusion, f is entire and
bounded. By Liouville’s theorem, it is constant.

Let f: M — C be a function that is holomorphic apart from singularities in M that are all
poles. Show that the number of singularities inside a compact set is finite.

Solution: Let K C M be a compact set. Let S be the set of singularities in K. Since they are
all isolated poles, for each z € S, there is r, > 0 such that f does not vanish on D(z, 7). Then
the set U = (J,cg D(2,72) is open. Thus K\U = K NU¢ is a closed and bounded set, i.e. it
is compact. By the identity theorem, either f = 0 or f has finitely many zeros on K\U. The
first case is trivial. In the second case, we showed that f has finitely many zeros in K. Then
1/f is a function with finitely many singularities given by the above zeros, that are poles, in
K. In particular, the singularities are isolated. The zeros of 1/f are exactly the pole of S. By
the same reasoning as above, there are finitely many of them.

Other solution: If f has an infinite amount of pole inside a compact K, then there is a se-
quence of poles that converges. Then the limit point of these poles is also a pole because any
neighborhood around it is unbounded. It also can’t be an essential singularity by hypothesis.
Find the singularities of —%—. Show that they are poles. Give the residue and the order of

sin(z)
each pole.

1
sin(z) *

Moreover, sin(z)’|,—r = cos(rk) = (—1)* # 0. So the singularities are simple poles. We have
by L'Hopital’s rule:

Solution: We know that sin(z) = 0 & z = 7wk, k € Z. These are the singularities of

L
sin(z) 2k sin(z) ok cos(z)

= (-1~

reSrk

Find the singularities and the principal parts of the following function:

(b) 1—cozs(z)

(C) 5mz(§)27

(d) (1+2%)72

Solution:

(a) The singularities are given by z* = —1, that is z, = e™/4+™k/2 | = (,1,2,3. Each

singularity is a simple pole, so the principal part is given by the residue. Note that
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1+2*=(2—21)(2 — 22)(2 — 23)(2 — 24). Then
T . lim 1 1
im —— = lim = .
2oz 1+ 24 Z— 2k Hbﬁk(z — Zg) Hf;ék(zk - Zg)
b) The only singularity is at z = 0. Note that 1 — cos(z) has a double zero at 0 since
g
(1 — cos(z))” = —cos(z) which does not vanish for z = 0. Hence we have a removable
singularity at 0 and its principal part is 0.
(¢) In this lecture, we defined

) _ o0 (71)n22n+1 _ 23
SIH(Z)—ZWf27E+
n=0

Dividing by z° shifts the series by 5 degrees. The principal part is then given by

1 i 1 N
A\ 76 ) T8 3
(d) The singularities are given by 1+ 22 = 0, that is z = 4. They are both poles of degree

2. We have
1 1 1

T+222 (z—i2 (z+i)?
To compute the principal part, we only need to compute the Taylor series of ﬁ at

z = Fi. The first coefficient is (ﬂl) = —i. The second coefficient is —ﬁ = :I:i'. Then
the principal part at Fi is given by

1 1 ) 1 i
(z£i)2 <_4 * 4(Zil)> ST T Ay

(5) Let f be a holomorphic function with a simple pole at zg and g be a holomorphic function in
a neighborhood of zy. Show that

res;, (fg) = g(z0) res;, f.

Solution: Since g is holomorphic at z, we have that f(2)g(z)(z — 2) is bounded in D(z,r)
for some r > 0. So fg has either a simple pole or a removable singularity at zp. In the first
case, the residue is

Tim [(=)g()(= = 20)] = g(z0) Jim f(2)(z = 20) = g(z0) s, .

Z—r20

In the second case, fg is bounded near zp, so f(z)g(z)(z — z9) — 0 as z — 2p. So g(z0) =0
and

res,, (fg) = 0 = g(z0) res,, f.

(6) Show that the Laurent series expansion is unique. That is, show that if

f(Z): ianz_zo anZ—Zo

n=—oo n=—oo

on some annulus centered at zg, then a,, = b, for all n. Hint: consider a contour integral around
zo and use that the Laurent series converge uniformly in the annulus.
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Solution: Suppose that f and g converge on some annulus A(zg, R1, R2). Let m be fixed and
v be the circle |z — z9| = r with Ry < r < Rs. By uniform convergence, we have

F(2)(z — 20)™dz = i an(z — 20)" ™ dz = i an [ (2 — 20)" ™dz.
/ / /

n=-—o0 n=-—oo
If n —m # 1, then the inner integral is 0 by Cauchy’s theorem. Otherwise it was computed
multiple times in the lecture. We get

/ f(2)(z = 20) ™dz = 2Tia,11.
vy

If f(z) = 7 bn(z — 20)™, then the above integral is 27mib,,+1. Therefore a,,+1 = by4q for

n=—oo

all m € Z.
Consider the following integrals from homework 3. Compute them using the residue theorem:

1 d z
/ - +e” ) dz, / _E , / < ds
lz]=1 \? lz—1]=1 22 -1 |z|]=1 24

Solution: The first integral has a simple pole at 0 with residue 1. Therefore

1
/ ( + ez> dz = 2mi.
|z|]=1 \?

The second integral has two simple poles at £1. Only +1 is inside the curve |z — 1| = 1. The
residue is

Then

The third integral has only a pole at z = 0 with the following Laurent series:

o0 n

> o
;.
=, (n+ 4)!
In particular, the residue at 0 is % = %. Therefore
z 2 y o
[ e
|z|=1 z 6 3
Evaluate
/ < dx
e 2241
by integrating the function f(z) = 22—1“ on the contour 7 consisting of the real segment [—R, R)

and the upper semicircle going from R to —R with center 0.

Solution: Let f(z) = zZ’IT We consider the contour given in the hint and write yr for the

semicircle from R to —R. The singularities of f are +i. Only +i is inside the contour. We have
z—1 1
. = 1. —_—_—
res ) =l = =
By the residue theorem, we have

R
—R YR
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Since |2% + 1| > |2|* — 1, we have |f(2)] < \ZI%l for z large enough. Then

TR

< —— = 1.

f(z)dz

YR
Taking the limit as R — oo, we get




