SOLUTION 5

(1) Let f be an entire function such that f(z+1)=f(z) and f(z+i)=f(z) for all $z\in\mathbb{C}$. Show that f is constant.

Solution: By induction, we have $f(z) = f(\tilde{z})$ where \tilde{z} is the unique complex number in $[0,1)^2$ such that $z-\tilde{z}$ has integral real and imaginary parts. Moreover, $[0,1]^2$ is compact so f is bounded by a constant M>0 on it. Hence $|f(\tilde{z})| \leq M$. In conclusion, f is entire and bounded. By Liouville's theorem, it is constant.

(2) Let $f: M \to \mathbb{C}$ be a function that is holomorphic apart from singularities in M that are all poles. Show that the number of singularities inside a compact set is finite.

Solution: Let $K \subseteq M$ be a compact set. Let S be the set of singularities in K. Since they are all isolated poles, for each $z \in S$, there is $r_z > 0$ such that f does not vanish on $\dot{D}(z, r_z)$. Then the set $U = \bigcup_{z \in S} D(z, r_z)$ is open. Thus $K \setminus U = K \cap U^c$ is a closed and bounded set, i.e. it is compact. By the identity theorem, either f = 0 or f has finitely many zeros on $K \setminus U$. The first case is trivial. In the second case, we showed that f has finitely many zeros in K. Then 1/f is a function with finitely many singularities given by the above zeros, that are poles, in K. In particular, the singularities are isolated. The zeros of 1/f are exactly the pole of S. By the same reasoning as above, there are finitely many of them.

Other solution: If f has an infinite amount of pole inside a compact K, then there is a sequence of poles that converges. Then the limit point of these poles is also a pole because any neighborhood around it is unbounded. It also can't be an essential singularity by hypothesis.

(3) Find the singularities of $\frac{1}{\sin(z)}$. Show that they are poles. Give the residue and the order of each pole.

Solution: We know that $\sin(z) = 0 \Leftrightarrow z = \pi k, \ k \in \mathbb{Z}$. These are the singularities of $\frac{1}{\sin(z)}$. Moreover, $\sin(z)'|_{z=\pi k} = \cos(\pi k) = (-1)^k \neq 0$. So the singularities are simple poles. We have by L'Hôpital's rule:

$$\operatorname{res}_{\pi k} \frac{1}{\sin(z)} = \lim_{z \to \pi k} \frac{z}{\sin(z)} = \lim_{z \to \pi k} \frac{1}{\cos(z)} = (-1)^k.$$

(4) Find the singularities and the principal parts of the following function:

- (a) $(1+z^4)^{-1}$,
- (b) $\frac{1-\cos(z)}{z^2}$
- (c) $\frac{\sin(z)^2}{z^5}$,
- (d) $(1+z^2)^{-2}$.

Solution:

(a) The singularities are given by $z^4 = -1$, that is $z_k = e^{\pi i/4 + \pi i k/2}$, k = 0, 1, 2, 3. Each singularity is a simple pole, so the principal part is given by the residue. Note that

$$1 + z^4 = (z - z_1)(z - z_2)(z - z_3)(z - z_4). \text{ Then}$$

$$\lim_{z \to z_k} \frac{z - z_k}{1 + z^4} = \lim_{z \to z_k} \frac{1}{\prod_{\ell \neq k} (z - z_\ell)} = \frac{1}{\prod_{\ell \neq k} (z_k - z_\ell)}.$$

- (b) The only singularity is at z = 0. Note that $1 \cos(z)$ has a double zero at 0 since $(1 \cos(z))'' = -\cos(z)$ which does not vanish for z = 0. Hence we have a removable singularity at 0 and its principal part is 0.
- (c) In this lecture, we defined

$$\sin(z) = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!} = z - \frac{z^3}{6} + \dots$$

Dividing by z^5 shifts the series by 5 degrees. The principal part is then given by

$$\frac{1}{z^5} \left(z - \frac{z^3}{6} + \dots \right)^2 = \frac{1}{z^3} - \frac{1}{3z} + \dots$$

(d) The singularities are given by $1 + z^2 = 0$, that is $z = \pm i$. They are both poles of degree 2. We have

$$\frac{1}{(1+z^2)^2} = \frac{1}{(z-i)^2} \cdot \frac{1}{(z+i)^2}.$$

To compute the principal part, we only need to compute the Taylor series of $\frac{1}{(z\pm i)^2}$ at $z=\mp i$. The first coefficient is $\frac{1}{(\pm 2i)^2}=-\frac{1}{4}$. The second coefficient is $-\frac{2}{(\pm 2i)^3}=\pm\frac{i}{4}$. Then the principal part at $\mp i$ is given by

$$\frac{1}{(z\pm i)^2} \left(-\frac{1}{4} \pm \frac{i}{4} (z\pm i) \right) = -\frac{1}{4(z\pm i)^2} \pm \frac{i}{4(z-i)}.$$

(5) Let f be a holomorphic function with a simple pole at z_0 and g be a holomorphic function in a neighborhood of z_0 . Show that

$$\operatorname{res}_{z_0}(fg) = g(z_0)\operatorname{res}_{z_0} f.$$

Solution: Since g is holomorphic at z_0 , we have that $f(z)g(z)(z-z_0)$ is bounded in $\dot{D}(z_0,r)$ for some r>0. So fg has either a simple pole or a removable singularity at z_0 . In the first case, the residue is

$$\lim_{z \to z_0} \left[f(z) g(z) (z - z_0) \right] = g(z_0) \lim_{z \to z_0} f(z) (z - z_0) = g(z_0) \operatorname{res}_{z_0} f.$$

In the second case, fg is bounded near z_0 , so $f(z)g(z)(z-z_0)\to 0$ as $z\to z_0$. So $g(z_0)=0$ and

$$\operatorname{res}_{z_0}(fq) = 0 = q(z_0) \operatorname{res}_{z_0} f.$$

(6) Show that the Laurent series expansion is unique. That is, show that if

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n = \sum_{n=-\infty}^{\infty} b_n (z - z_0)^n$$

on some annulus centered at z_0 , then $a_n = b_n$ for all n. Hint: consider a contour integral around z_0 and use that the Laurent series converge uniformly in the annulus.

Solution: Suppose that f and g converge on some annulus $A(z_0, R_1, R_2)$. Let m be fixed and γ be the circle $|z - z_0| = r$ with $R_1 < r < R_2$. By uniform convergence, we have

$$\int_{\gamma} f(z)(z-z_0)^{-m} dz = \int_{\gamma} \sum_{n=-\infty}^{\infty} a_n (z-z_0)^{n-m} dz = \sum_{n=-\infty}^{\infty} a_n \int_{\gamma} (z-z_0)^{n-m} dz.$$

If $n-m \neq 1$, then the inner integral is 0 by Cauchy's theorem. Otherwise it was computed multiple times in the lecture. We get

$$\int_{\gamma} f(z)(z - z_0)^{-m} dz = 2\pi i a_{m+1}.$$

If $f(z) = \sum_{n=-\infty}^{\infty} b_n (z-z_0)^n$, then the above integral is $2\pi i b_{m+1}$. Therefore $a_{m+1} = b_{m+1}$ for all $m \in \mathbb{Z}$.

(7) Consider the following integrals from homework 3. Compute them using the residue theorem:

$$\int_{|z|=1} \left(\frac{1}{z} + e^z\right) dz, \qquad \int_{|z-1|=1} \frac{dz}{z^2 - 1}, \qquad \int_{|z|=1} \frac{e^z}{z^4} dz.$$

Solution: The first integral has a simple pole at 0 with residue 1. Therefore

$$\int_{|z|=1} \left(\frac{1}{z} + e^z\right) dz = 2\pi i.$$

The second integral has two simple poles at ± 1 . Only +1 is inside the curve |z-1|=1. The residue is

$$\lim_{z \to 1} \frac{z - 1}{z^2 - 1} = \frac{1}{1 + 1} = \frac{1}{2}.$$

Then

$$\int_{|z-1|=1} \frac{dz}{z^2-1} = \frac{2\pi i}{2} = \pi i.$$

The third integral has only a pole at z=0 with the following Laurent series:

$$\sum_{n=-4}^{\infty} \frac{z^n}{(n+4)!}.$$

In particular, the residue at 0 is $\frac{1}{3!} = \frac{1}{6}$. Therefore

$$\int_{|z|=1} \frac{e^z}{z^4} dz = \frac{2\pi i}{6} = \frac{\pi i}{3}.$$

(8) Evaluate

$$\int_{-\infty}^{\infty} \frac{dx}{x^2 + 1}$$

by integrating the function $f(z) = \frac{1}{z^2+1}$ on the contour γ consisting of the real segment [-R, R] and the upper semicircle going from R to -R with center 0.

Solution: Let $f(z) = \frac{1}{z^2+1}$. We consider the contour given in the hint and write γ_R for the semicircle from R to -R. The singularities of f are $\pm i$. Only +i is inside the contour. We have

$$\operatorname{res}_i f(z) = \lim_{z \to i} \frac{z - i}{z^2 + 1} = \frac{1}{2i}$$

By the residue theorem, we have

$$\int_{-R}^{R} f(z)dz + \int_{\gamma_R} f(z)dz = 2\pi i \operatorname{res}_i f = \pi.$$

Since $|z^2+1| \ge |z|^2-1$, we have $|f(z)| \le \frac{1}{|z|^2-1}$ for z large enough. Then

$$\left| \int_{\gamma_R} f(z) dz \right| \le \frac{\pi R}{R^2 - 1} = O(R^{-1}).$$

Taking the limit as $R \to \infty$, we get

$$\int_{-\infty}^{\infty} \frac{dz}{z^2 + 1} = \pi.$$