
SOLUTION 5

(1) Let f be an entire function such that f(z + 1) = f(z) and f(z + i) = f(z) for all z ∈ C. Show
that f is constant.

Solution: By induction, we have f(z) = f(z̃) where z̃ is the unique complex number in
[0, 1)2 such that z − z̃ has integral real and imaginary parts. Moreover, [0, 1]2 is compact so
f is bounded by a constant M > 0 on it. Hence |f(z̃)| ≤ M . In conclusion, f is entire and
bounded. By Liouville’s theorem, it is constant.

(2) Let f : M → C be a function that is holomorphic apart from singularities in M that are all
poles. Show that the number of singularities inside a compact set is finite.

Solution: Let K ⊆ M be a compact set. Let S be the set of singularities in K. Since they are
all isolated poles, for each z ∈ S, there is rz > 0 such that f does not vanish on Ḋ(z, rz). Then
the set U =

⋃
z∈S D(z, rz) is open. Thus K\U = K ∩ U c is a closed and bounded set, i.e. it

is compact. By the identity theorem, either f = 0 or f has finitely many zeros on K\U . The
first case is trivial. In the second case, we showed that f has finitely many zeros in K. Then
1/f is a function with finitely many singularities given by the above zeros, that are poles, in
K. In particular, the singularities are isolated. The zeros of 1/f are exactly the pole of S. By
the same reasoning as above, there are finitely many of them.
Other solution: If f has an infinite amount of pole inside a compact K, then there is a se-
quence of poles that converges. Then the limit point of these poles is also a pole because any
neighborhood around it is unbounded. It also can’t be an essential singularity by hypothesis.

(3) Find the singularities of 1
sin(z) . Show that they are poles. Give the residue and the order of

each pole.

Solution: We know that sin(z) = 0 ⇔ z = πk, k ∈ Z. These are the singularities of 1
sin(z) .

Moreover, sin(z)′|z=πk = cos(πk) = (−1)k ̸= 0. So the singularities are simple poles. We have
by L’Hôpital’s rule:

resπk
1

sin(z)
= lim

z→πk

z

sin(z)
= lim

z→πk

1

cos(z)
= (−1)k.

(4) Find the singularities and the principal parts of the following function:
(a) (1 + z4)−1,

(b) 1−cos(z)
z2 ,

(c) sin(z)2

z5 ,

(d) (1 + z2)−2.

Solution:
(a) The singularities are given by z4 = −1, that is zk = eπi/4+πik/2, k = 0, 1, 2, 3. Each

singularity is a simple pole, so the principal part is given by the residue. Note that
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1 + z4 = (z − z1)(z − z2)(z − z3)(z − z4). Then

lim
z→zk

z − zk
1 + z4

= lim
z→zk

1∏
ℓ̸=k(z − zℓ)

=
1∏

ℓ̸=k(zk − zℓ)
.

(b) The only singularity is at z = 0. Note that 1 − cos(z) has a double zero at 0 since
(1 − cos(z))′′ = − cos(z) which does not vanish for z = 0. Hence we have a removable
singularity at 0 and its principal part is 0.

(c) In this lecture, we defined

sin(z) =

∞∑
n=0

(−1)nz2n+1

(2n+ 1)!
= z − z3

6
+ . . . .

Dividing by z5 shifts the series by 5 degrees. The principal part is then given by

1

z5

(
z − z3

6
+ . . .

)2

=
1

z3
− 1

3z
+ . . .

(d) The singularities are given by 1 + z2 = 0, that is z = ±i. They are both poles of degree
2. We have

1

(1 + z2)2
=

1

(z − i)2
· 1

(z + i)2
.

To compute the principal part, we only need to compute the Taylor series of 1
(z±i)2 at

z = ∓i. The first coefficient is 1
(±2i)2 = − 1

4 . The second coefficient is − 2
(±2i)3 = ± i

4 . Then

the principal part at ∓i is given by

1

(z ± i)2

(
−1

4
± i

4
(z ± i)

)
= − 1

4(z ± i)2
± i

4(z − i)
.

(5) Let f be a holomorphic function with a simple pole at z0 and g be a holomorphic function in
a neighborhood of z0. Show that

resz0(fg) = g(z0) resz0 f.

Solution: Since g is holomorphic at z0, we have that f(z)g(z)(z − z0) is bounded in Ḋ(z0, r)
for some r > 0. So fg has either a simple pole or a removable singularity at z0. In the first
case, the residue is

lim
z→z0

[f(z)g(z)(z − z0)] = g(z0) lim
z→z0

f(z)(z − z0) = g(z0) resz0 f.

In the second case, fg is bounded near z0, so f(z)g(z)(z − z0) → 0 as z → z0. So g(z0) = 0
and

resz0(fg) = 0 = g(z0) resz0 f.

(6) Show that the Laurent series expansion is unique. That is, show that if

f(z) =

∞∑
n=−∞

an(z − z0)
n =

∞∑
n=−∞

bn(z − z0)
n

on some annulus centered at z0, then an = bn for all n. Hint: consider a contour integral around
z0 and use that the Laurent series converge uniformly in the annulus.
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Solution: Suppose that f and g converge on some annulus A(z0, R1, R2). Let m be fixed and
γ be the circle |z − z0| = r with R1 < r < R2. By uniform convergence, we have∫

γ

f(z)(z − z0)
−mdz =

∫
γ

∞∑
n=−∞

an(z − z0)
n−mdz =

∞∑
n=−∞

an

∫
γ

(z − z0)
n−mdz.

If n − m ̸= 1, then the inner integral is 0 by Cauchy’s theorem. Otherwise it was computed
multiple times in the lecture. We get∫

γ

f(z)(z − z0)
−mdz = 2πiam+1.

If f(z) =
∑∞

n=−∞ bn(z− z0)
n, then the above integral is 2πibm+1. Therefore am+1 = bm+1 for

all m ∈ Z.

(7) Consider the following integrals from homework 3. Compute them using the residue theorem:∫
|z|=1

(
1

z
+ ez

)
dz,

∫
|z−1|=1

dz

z2 − 1
,

∫
|z|=1

ez

z4
dz.

Solution: The first integral has a simple pole at 0 with residue 1. Therefore∫
|z|=1

(
1

z
+ ez

)
dz = 2πi.

The second integral has two simple poles at ±1. Only +1 is inside the curve |z − 1| = 1. The
residue is

lim
z→1

z − 1

z2 − 1
=

1

1 + 1
=

1

2
.

Then ∫
|z−1|=1

dz

z2 − 1
=

2πi

2
= πi.

The third integral has only a pole at z = 0 with the following Laurent series:
∞∑

n=−4

zn

(n+ 4)!
.

In particular, the residue at 0 is 1
3! =

1
6 . Therefore∫

|z|=1

ez

z4
dz =

2πi

6
=

πi

3
.

(8) Evaluate ∫ ∞

−∞

dx

x2 + 1

by integrating the function f(z) = 1
z2+1 on the contour γ consisting of the real segment [−R,R]

and the upper semicircle going from R to −R with center 0.

Solution: Let f(z) = 1
z2+1 . We consider the contour given in the hint and write γR for the

semicircle from R to −R. The singularities of f are ±i. Only +i is inside the contour. We have

resi f(z) = lim
z→i

z − i

z2 + 1
=

1

2i

By the residue theorem, we have∫ R

−R

f(z)dz +

∫
γR

f(z)dz = 2πi resi f = π.
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Since
∣∣z2 + 1

∣∣ ≥ |z|2 − 1, we have |f(z)| ≤ 1
|z|2−1

for z large enough. Then∣∣∣∣∫
γR

f(z)dz

∣∣∣∣ ≤ πR

R2 − 1
= O(R−1).

Taking the limit as R → ∞, we get∫ ∞

−∞

dz

z2 + 1
= π.


