
SOLUTION 6

(1) Find the Laurent series of 1
(z−1)(z−2) in the annuli A(0, 0, 1), A(0, 1, 2) and A(0, 2,∞). Hint:

use partial fractions and write each term as a geometric series.

Solution: We have
1

(z − 1)(z − 2)
=

1

z − 2
− 1

z − 1
.

We want to apply 1
1−x = 1 + x+ x2 + . . . for |x| < 1. Suppose |z| < 1, then

1

z − 2
− 1

z − 1
= −1

2
· 1

1− z
2

+
1

1− z
= −1

2

∞∑
n=0

(z
2

)n

+

∞∑
n=0

zn =

∞∑
n=0

(1− 2−n−1)zn.

Similarly, if 1 < |z| < 2, then

1

z − 2
− 1

z − 1
= −1

2
· 1

1− z
2

− 1

z
· 1

1− 1
z

=

∞∑
n=0

2−n−1zn −
∞∑

n=1

z−n.

Finally, if 2 < |z|, then

1

z − 2
− 1

z − 1
=

1

z
· 1

1− 2
z

− 1

z
· 1

1− 1
z

=

∞∑
n=1

(2n−1 − 1)z−n =

∞∑
n=0

(2n−1 − 1)z−n.

(2) Use any method you like to find (n > 0 is an integer)
(a) ∫

|z+1|=2

ez

(z + 1)34
dz,

(b) ∫
|z−1|=1

(
z

z − 1

)n

dz.

Solution:
(a) The integrand has a pole of order 34 at z = −1 and no other singularity. We compute its

residue:

res−1
ez

(z + 1)34
=

1

33!
lim

z→−1

d33

dz33
ez

(z + 1)34
(z + 1)34 =

1

33!
lim

z→−1

d33

dz33
ez =

1

33!
lim

z→−1
ez =

1

33!e
.

Then the integral is∫
|z+1|=2

ez

(z + 1)34
dz = 2πi res−1

ez

(z + 1)34
=

2πi

33!e
.

(b) By Cauchy’s formula for the function f(z) = zn, we have∫
|z−1|=1

(
z

z − 1

)n

dz =

∫
|z−1|=1

f(z)

(z − 1)n
dz =

2πi

(n− 1)!
f (n−1)(1) =

2πi

(n− 1)!
n! = 2πin.



SOLUTION 6

(3) Let f : C → C be a holomorphic function. Show that f(1/z) has a pole at z = 0 if and only if
f is a non-constant polynomial. Hint: start from the Taylor series of f(z) at the origin.

Solution: Since f is an entire function, it has a Taylor series converging on C:

f(z) =

∞∑
n=0

anz
n.

Then f(1/z) =
∑∞

n=0 anz
−n for z ∈ C\{0}. By uniqueness of Laurent series, f(1/z) has a pole

if and only if there is N > 0 such that an = 0 for n ≥ N . In that case, f is a polynomial of
degree N − 1.

(4) Prove the identity (
π

sin(πz)

)2

=

∞∑
n=−∞

1

(z + n)2

for z ∈ C\Z. Bonus: deduce that ζ(2) = π2

6 . Hint: show that the difference of the two sides
extends to a bounded entire function whose limit as Im(z) → ±∞ is 0.

Solution: Let f(z) = ( π
sin(πz) )

2 and g(z) =
∑∞

n=−∞
1

(z+n)2 . First note that g(z) converges

uniformly away from Z: remove the two integers closest to z from the sum. Then the two next
integer closest to z are at distance at least one. The two next are at distance at least 2 and so
on. In the end, we bound g by 2

∑∞
n=1

1
n2 plus finitely many terms.

The two functions have poles of order 2 at integers. We compute the principal part of f(z).
First we compute the Laurent series of π

sin(πz) at z0 = n ∈ Z. We have

lim
z→n

π(z − n)

sin(πz)
=

π

π cos(πz)
= (−1)n

and, using the Taylor series of sin(πz) and cos(πz) at z = n

lim
z→n

d

dz

π(z − n)

sin(πz)
= lim

z→n

π sin(πz)− π2(z − n) cos(πz)

sin(πz)2

= lim
z→n

(−1)nπ2(z − n)− (−1)2π2(z − n) +O((z − n)3)

sin(πz)2

= lim
z→n

O((z − n)3)

sin(πz)2

= 0.

This limit can also be computed using L’Hôpital. Therefore π
sin(πz) = (−1)n

z−n + 0 + O(z − n).

We conclude that(
π

(sin(πz)

)2

=

(
(−1)n

z − n
+ 0 +O((z − n))

)2

=
1

(z − n)2
+O(1).

So f and g have the same principal part. Then f − g has removable singularities at n ∈ Z. We
want to show that f − g is bounded. By periodicity, we can suppose that Re(z) ∈ [0, 1]. We
have

|sin(πz)| =
∣∣eπiz − e−πiz

∣∣
2

≥
∣∣e−π Im(z) − eπ Im(z)

∣∣
2

→ ∞

as Im(z) → ∞. In particular, |f(z)| < 1 if |Im(z)| > R for some R large enough. Similarly for
g, suppose R < |Im z|. Note that |z + n| is always larger than the absolute value of its real or
imaginary part. Then

|g(z)| ≤
∑

|n|≤R

1

|z + n|2
+

∑
|n|>R

1

|z + n|2
≤ 2R+ 1

R2
+

∑
|n|>R

1

(Re(z) + n)2
= O(R−1).
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The second estimate is obtained by comparing the sum to the integral
∫∞
R

dt
Re(z)+t . As for f ,

we have |g(z)| ≤ 1 for R large enough.
The remaining part of the strip, {z ∈ C : Re(z) ∈ [0, 1] |Im(z)| ≤ R}, is a compact set. On

it f − g have only removable singularities so it is bounded. In conclusion, f − g is a bounded
function on C. By Liouville’s theorem, it is a constant. Since f and g goes to 0 as Im(z) → ∞,
the constant is 0 and f = g.

Finally

2ζ(2) = lim
z→0

(
g(z)− 1

z2

)
= lim

z→0

(
f(z)− 1

z2

)
.

We have

π2

sin(πz)2
− 1

z2
=

π2z2 − sin(πz)2

sin(πz)2z2
=

π2z2 −
[
(πz)2 − (πz)4/3 +O(z6)

]
sin(πz)2z2

=
π2(πz)2/3 +O(z4)

sin(πz)2
.

Using again limz→0
πz

sin(πz) = 1, we get

2ζ(2) =
π2

3
lim
z→0

(πz)2

sin(πz)2
=

π2

3
.

(5) Show that ∫ ∞

−∞

dx

(1 + x2)n+1
=

1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n)
· π.

Hint: follow the method of exercise (8) in homework 5.

Solution: Like in homework 5, we consider the contour given by the segment [−R,R] and the
semicircle γR going from R to −R. We have∣∣∣∣ 1

(1 + x2)n+1

∣∣∣∣ ≤ 1

|R2 − 1|n+1 → 0

as R → ∞. Then the residue theorem tells us that∫ ∞

−∞

dx

(1 + x2)n+1
= 2πi resi

1

(1 + z2)n+1
.

Clearly, the function f(z) = 1
(1+z2)n+1 has a pole of order n+ 1 at i. We compute

resi f =
1

n!
lim
z→i

dn

dzn
f(z)(z − i)n

=
1

n!
lim
z→i

dn

dzn
1

(z + i)n+1

=
1

n!
lim
z→i

(−1)n
(n+ 1)(n+ 2) · · · (2n)

(z + i)2n+1

=
(n+ 1)(n+ 2) . . . (2n)

22n+1n!i

=
1

2i

(2n)!

22nn!n!

=
1

2i

(2n)!

[2 · 4 · · · (2n− 2)(2n)]2

=
1

2i

1 · 3 · 5 · · · (2n− 1)

2 · 4 · · · (2n− 2)(2n)
.

In conclusion, we have∫ ∞

−∞

dx

(1 + x2)n+1
=

2πi

2i

1 · 3 · 5 · · · (2n− 1)

2 · 4 · · · (2n− 2)(2n)
=

1 · 3 · 5 · · · (2n− 1)

2 · 4 · · · (2n− 2)(2n)
π.
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(6) Construct a function f that has a non-isolated singularity and countably many singularities.
Hint: consider the z such that e1/z is 1.

Solution: We have e1/z = 1 ⇔ 1
z ∈ 2πiZ ⇔ z = 1

2πik for some k ∈ Z. Then as k → ∞,
1

2πik → 0. So the function 1
e1/z−1

has a non-isolated singularity at 0. The singularities of that

functions are exactly 1
2πik for k ∈ Z and 0.

(7) Let f(z) = (z−2)3ez

(z−1)4 . Find ∫
|z|=r

f ′(z)

f(z)
dz

for r = 3 and r = 3/2.

Solution: The curve |z| = r is simple. By the argument principle, we need to count the zeros
and poles of f(z) inside the curve. Clearly f has a zero of order 3 at 2, a pole of order 4 at 1
and no other singularity. Therefore∫

|z|=r

f ′(z)

f(z)
dz = 2πi ·

{
−1 if r = 3,

−4 if r = 3/2.

(8) Let f(z) = anz
n + · · ·+ a1z+ a0 be a polynomial. Show that if |ak| rk >

∑
j ̸=k |aj | rj for some

r > 0, then f has exactly k roots inside D(0, r). Hint: use Rouché’s theorem.

Solution: Let g(z) = akz
k and h(z) =

∑
j ̸=k ajz

j . Then on |z| = r, we have |g(z)| ≥ |h(z)|. By
Rouché’s theorem, g(z) and g(z) + h(z) = f(z) have the same number of zeros inside D(0, r).
So f has exactly k roots inside D(0, r).


