SOLUTION 6

L in the annuli A(0,0,1), A(0,1,2) and A(0,2,00). Hint

(1) Find the Laurent series of e e
use partial fractions and write each term as a geometric series.

Solution: We have
1 1 1
(z—=1)(z—2) 2-2 z-1

We want to apply ﬁ =1+a+22+... for |z| < 1. Suppose |z| < 1, then
(oo}

11 1 L2 /2\" <= n I
:—§Z<§) +ZZ 22(1—2 )Z
n=0 n=0 n=0

1 - 4
z—2 z-1 2 1-%2 1-2
Similarly, if 1 < |z| < 2, then
1 1 11 11 - -
_ — __ . . — 277171 n __ -n
z2—-2 z-1 2 1-2 2 1-1 Z o Zz
z n=0 n=1
Finally, if 2 < |z|, then
1 1 11 11 - -
_ - .- . — 2”7171 -n _ 2n7171 -n
z2—2 z—-1 =z 1-2 - 1-1 Z( )z Z( )2
z z n=1 n=0
(2) Use any method you like to find (n > 0 is an integer)
(a)
ez
———dz,
/z+1=2 (z+1)%
(b) )
z
dz.
/z—1|—1 (Z - 1)
Solution:
(a) The integrand has a pole of order 34 at z = —1 and no other singularity. We compute its
residue:
e? 1 . a3 e? 34 . 3 1 .
G st EE e ) T s e = sy e S e
Then the integral is
/ e? J o e* 27
————;dz = 2mires_] ——7 = ——.
lzt1)=2 (2 +1)% P+ 13 33le
(b) By Cauchy’s formula for the function f(z) = 2", we have
f(2) _2M iy 2mE
dz = !f (1) = = 1)!n. = 2min.

z—1

/z_u_l( - )ndzz/z_l._l EES Y
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SOLUTION 6

Let f: C — C be a holomorphic function. Show that f(1/z) has a pole at z = 0 if and only if
f is a non-constant polynomial. Hint: start from the Taylor series of f(z) at the origin.

Solution: Since f is an entire function, it has a Taylor series converging on C:

f(z) = Z anz".
n=0

Then f(1/z) = > 07 janz~" for z € C\{0}. By uniqueness of Laurent series, f(1/z) has a pole
if and only if there is N > 0 such that a,, = 0 for n > N. In that case, f is a polynomial of
degree N — 1.

Prove the identity

for z € C\Z. Bonus: deduce that ((2) = %2. Hint: show that the difference of the two sides
extends to a bounded entire function whose limit as Im(z) — oo is 0.

Solution: Let f(z) = (SIHE'TZ))Q and g(z) = >00 ﬁ First note that g(z) converges
uniformly away from Z: remove the two integers closest to z from the sum. Then the two next
integer closest to z are at distance at least one. The two next are at distance at least 2 and so
on. In the end, we bound g by 2377 | % plus finitely many terms.

The two functions have poles of order 2 at integers. We compute the principal part of f(z).

First we compute the Laurent series of bmzrim) at zg = n € Z. We have

m(z—mn) v

lim =
z—n sin(rz) 7 cos(mz)

~ (-1

and, using the Taylor series of sin(7z) and cos(7z) at z =n

_ i 2y —
lim d m(z—n) — lim mwsin(rz) — 7%(z — n) cos(wz)

z—=n dz sin(rz)  zon sin(mz)?
(=)' (z —n) — (-1)*7%(2 —n) + O((z — n)?)

= lim ;

z—n sin(7rz)?

_\3

i OG0

z—n  sin(nz)?
=0.

This limit can also be computed using L’Hopital. Therefore Sinaz) = (;12; +0+0(z —n).

We conclude that

((”m))Q _ ((‘1)n +0+0((2— n)))2 - (% +0(1).

sin( z—n z—n)

So f and g have the same principal part. Then f — g has removable singularities at n € Z. We
want to show that f — g is bounded. By periodicity, we can suppose that Re(z) € [0,1]. We
have

‘e‘m’z _ e—ﬂ'iz| ‘e—ﬂlm(z) —eT Im(z)}

>
2 - 2

as Im(z) — oo. In particular, |f(2)| < 1 if [Im(z)| > R for some R large enough. Similarly for
g, suppose R < |Im z|. Note that |z + n| is always larger than the absolute value of its real or

imaginary part. Then
1 2R+1 1
< < ———— =0(R .
lg(z)] < > +|§R|Z+n|2 STt Y T Fnr ~ O

In|<R

[sin(mz)| = — 00

|2+ n|?



SOLUTION 6

The second estimate is obtained by comparing the sum to the integral fR Ro( Z)_H As for f,
we have |g(z)| <1 for R large enough.

The remaining part of the strip, {z € C: Re(z) € [0,1] |[Im(z)| < R}, is a compact set. On
it f — g have only removable singularities so it is bounded. In conclusion, f — g is a bounded
function on C. By Liouville’s theorem, it is a constant. Since f and g goes to 0 as Im(z) — oo,
the constant is 0 and f = g.

Finally
. 1 . 1
2(2) = iy (36~ 3 ) = i (£2)-  ).
We have
™ 1 w2 —sin(rz)® 7wl - [(m2)? — (72)*/3+ O(2%)]  7%(72)?/3 + O(z*)
sin(mz)2 22 sin(mz)222 sin(mz)222 B sin(mz)? '
Using again lim,_,q W =1, we get
72 (72)? w2
2¢(2) = — lim ——— = —.
¢2) 3 50 sin(rz)2 3

(5) Show that

= <.

1+ 22)n+l 2-4-6---(2n)
Hint: follow the method of exercise (8) in homework 5.

/Oo dx 1-3-5---(2n—1)
(

Solution: Like in homework 5, we consider the contour given by the segment [—R, R] and the
semicircle yp going from R to —R. We have

1 1
< —
’ (1 + x2)n+1 — |R2 _ 1|n+1

as R — o0o. Then the residue theorem tells us that

e dx o 1
oo (L a2)ntt T T

Clearly, the function f(z) = W has a pole of order n + 1 at . We compute

1. -
res; f = EEL% ﬁf(z)(z—z)

1 . ﬁ 1

! 258 dam (2 + 7).

71 (—1)" L(n+1)(n+2) - (2n)

n! z—i (Z + i)2n+1
~ (n+1)(n+2)...(2n)
n 22n+1nls
1 (2n)!
2i 22np!n)
1 (2n)!

T 2i[2-4--(2n—2)(2n))2
~11-3-5---(2n—1)
T 2i2-4---(2n—2)(2n)°

In conclusion, we have

/oO dx _2mi 1-3-5---(2n—1) 1-3-5---(2n—1)
(

(T2 T 2124 (2n-2)(2n)  2-4---(2n—2)(2n)
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SOLUTION 6

Construct a function f that has a non-isolated singularity and countably many singularities.
Hint: consider the z such that e'/* is 1.

Solution: We have ¢'/? = 1 < % € 2ml & z = ﬁ for some k € Z. Then as k — oo,

527 — 0. So the function —A— has a non-isolated singularity at 0. The singularities of that
functions are exactly s+ for k € Z and 0.

2mik
f'(z)
-/z—r f(Z) a2

Solution: The curve |z| = r is simple. By the argument principle, we need to count the zeros
and poles of f(z) inside the curve. Clearly f has a zero of order 3 at 2, a pole of order 4 at 1
and no other singularity. Therefore

fz), o =1 ifr=3,
/z_r f(z) dz = 2mi {4 if r =3/2.

Let f(2) = an2™ +---+ a1z +ag be a polynomial. Show that if |ay|r* > > ik a4 77 for some
r > 0, then f has exactly k roots inside D(0,r). Hint: use Rouché’s theorem.

Let f(z) = % Find

for r =3 and r = 3/2.

Solution: Let g(z) = axz* and h(z) = D itk ajz7. Then on |z| = r, we have |g(z)| > |h(z)|. By
Rouché’s theorem, g(z) and g(z) + h(z) = f(z) have the same number of zeros inside D(0, 7).
So f has exactly k roots inside D(0, 7).



