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Abstract. We prove a non-trivial bound for Sp(2n) Kloosterman sums of moduli not equal

to a prime multiple of the identity. These sums are attached to Siegel modular forms on the
group Sp(2n) and appear in the corresponding Petersson formula. We give an application to

equidistribution of coprime symmetric pairs.

1. Introduction

Kloosterman sums are a type of exponential sums that play a significant role in number the-
ory. They allow for multiple generalizations over various groups such as GL(n) and Sp(2n). The
generalizations appear in particular in relative trace formulas of Petersson/Kuznetsov type and in
Fourier coefficients of Poincaré series, but also in relation to equidistribution problems. Recently,
non-trivial bounds have been proved for Kloosterman sums over groups of higher ranks. Blomer-
Man and Linn [BM, Lin] considered the Kloosterman sums appearing in the Kuznetsov formula for
GL(n). Erdélyi, Tóth and Zábrady [ET, ETZ] considered another type of GL(n) Kloosterman sums
appearing in equidistribution problems [ELS]. For the Petersson formula of the symplectic group,
only the case Sp(4) was considered until now with non-trivial bounds proven by Kitaoka and Tóth
[Kit, Tót]. In the Kuznetsov formula for Sp(4), the sums were bounded by Man [Man].

In this paper, we consider a generalization of Kloosterman sums to Sp(2n) appearing in the
theory of Siegel modular forms and in the corresponding Petersson formula. Let n be an integer,
C ∈ Matn(Z) a matrix with det(C) ̸= 0 and Q and T be two symmetric half-integral matrices. The
symplectic Kloosterman sum is

Kn(Q,T ;C) =
∑

(A B
C D )∈X(C)

e2πi tr(AC−1Q+C−1DT ).(1.1)

The sum is over symplectic matrices in the double quotient

X(C) := Γ∞\
{(

A B
C D

)
∈ Sp2n(Z)

}
/Γ∞

with Γ∞ = {
(
In X
0 In

)
∈ Sp2n(Z)}. To simplify, we write e(M) := e2πi tr(M) for a square matrix M .

For n = 1, this is consistent with the usual notation in number theory. Since Sp2(R) = SL2(R), we
obtain the classical Kloosterman sum in that case. We have the celebrated Weil bound [Wei]

|K1(q, t; c)| =

∣∣∣∣∣∣
∑

x (c), (x,c)=1

e(c−1qx+ c−1tx̄)

∣∣∣∣∣∣ ≤ τ(c)(c, q, t)1/2c1/2.
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In this introduction, we consider n ≥ 2. Since e(M) = 1 for a matrix M ∈ Matn(Z), summing over
X(C) is well defined. Unless necessary, we drop the size of the matrices n from the notation.

For any C ∈ Matn(Z) with det(C) ̸= 0, we have U, V ∈ GLn(Z) such that UCV = diag(c1, . . . , cn)
with c1 | · · · | cn. The integers c1, . . . , cn are called the elementary divisors of C and they are unique.
The diagonal matrix is called the Smith normal form of C. We show in Section 2 that the dependency
of K(Q,T ;C) in C is only in its elementary divisors. In particular, we have the trivial bound

Kn(Q,T ;C) ≤
n∏

i=1

cn−i+1
i .(1.2)

In the scalar case, when C = mIn, the trivial bound is mn(n+1)/2. Moreover, we can factorize the
sum with respect to the prime numbers dividing cn.

Let p be a prime and consider C of the form diag(pσ1 , . . . , pσn) with 0 ≤ σ1 ≤ · · · ≤ σn. Our first
result is a non-trivial bound for Kloosterman sums when at least σn ≥ 2. In the following theorem,
the notation (a,M,N) for integral matrices M and N means the greatest common divisor of a and
all the coordinates in M and N .

Theorem 1.1. Let p be a prime number and Q,T be two symmetric half-integral matrices.

(1) Let C = pσIn be a scalar matrix with σ ≥ 2. Let σ = 2µ+ ν with ν = 0 if σ is even and 1
otherwise. Then

Kn(Q,T ;C) ≪n pσn
2/2(pµ, 2Q, 2T )n(pν , 2Q, 2T )n/2.

(2) Let C = diag(pσ1 , . . . , pσn) with 0 ≤ σ1 ≤ · · · ≤ σn and σn ≥ 2. Let σi = 2µi + νi with
νi = 0 if σi is even and 1 otherwise.

Kn(Q,T ;C) ≪n

n∏
i=1

p(n−i+1/2)σi(pµi , 2Q′
i)(p

νi , 2Q′
i)

1/2.

Here Q′
i is defined as follow:

(a) If σi = 1, then Q′
i is the right block of Q of size n by s, where s is the smallest integer

with σs > 1. In that case, µi = 0.
(b) If σi ≥ 2, then Q′

i is the bottom-right block of Q of size s by s, where s is the smallest
integer with σs = σi.

In both cases, the implicit constant only depends on the dimension n.

In Lemma 2.9, we show that the roles of Q and T can be interchanged in the second bound. A
bound similar to Theorem 1.1 was proven by Márton, Tóth and Zábrádi in the case C = pIn.

Theorem 1.2 ([MT, TZ], to appear). Let p be an odd prime number and C = pIn. We have

Kn(Q,T ;C) ≪ pn(n+1)/2−r/2

with r = max{rkp Q, rkp T} where the ranks are taken modulo p.

In their articles, they also show that their result is essentially optimal. A non-trivial bound for
Kn(Q,T ;C) was first proven by Kitaoka [Kit] for n = 2. Later, Tóth proved square-root cancellation
for these sums [Tót], which is the best possible bound. Of course, for n = 1, the Weil bound already
gives square-root cancellation. With the result from Márton, Tóth and Zábrádi, this is the first
non-trivial bound for symplectic Kloosterman where n ≥ 3. The symplectic Kloosterman sums
appear in many applications. In particular, Kitaoka introduced them, in the paper cited above, to
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bound Fourier coefficients of Siegel modular forms. We hope to return to the generalization of these
questions to Sp2n(R) in the near future.

An important proof strategy for us is to decompose the modulus C into blocks of constant prime
powers. It leads to induction on the number of blocks and reduction of problems on coprime sym-
metric pairs with various congruences to problems on symmetric matrices and a unique congruence.
This is used in particular in Sections 4 and 5. By a coprime symmetric pair, we mean the two bottom
blocks (C,D) of a symplectic matrix. See Proposition 2.4 for equivalent definitions.

The proof of Theorem 1.1 is essentially in three parts. For C diagonal consisting of powers of p,
we can suppose that A = D̄t is the inverse transpose matrix of D (mod pσn) for (A B

C D ) ∈ X(C).
The proof starts by a p-adic stationary phase argument in Section 3 for C consisting of prime powers
larger than p. The challenge here is to combine the multiplicative structure of D̄t with its additive
structure, given by the fact CDt is symmetric for a symplectic matrix. Then in Section 4, we split
C into two blocks: C = diag(pIs, C1) with prime powers in C1 larger than p. We split in the same
way all the other matrices appearing in the sum. After computing the block inverse, we restructure
the sum and can insert the results of the last section. The final result is given in Proposition 4.2.
The symplectic Kloosterman sum is now given by a Kloosterman sum with C = pIs, a quadratic
matrix equation and two quadratic Gauss sums over matrices modulo respectively pMats,n−s(Z)
and C ′ Matn−s(Z) with the elements in C ′ equal to 1 or p, whether the corresponding prime power
is even or odd. In the second sum, there is an additional symmetry condition on the summed
matrices. Finally, in Section 5, we prove non-trivial bounds over the two Gauss sums and the
number of solutions to the quadratic equation. This relies in particular on a block decomposition of
C1 into different prime powers and a list of simpler matrix equations, for which we show non-trivial
bounds. We prove our theorem without appealing to Theorem 1.2 thanks to the first Gauss sum
modulo p, that correspond to the top-right block of D. The bound for this sum gives us a large
enough win over the trivial bound for the ”p-part” of C corresponding to its first block. The case
p = 2 is treated at the end of the section.

In this article, we develop a robust framework that allows for a square-root cancellation bound
with additional efforts. One would need to give better bounds to the matrix equations in Lemma
5.3 and in Case 1 of the proof of Proposition 5.5, compute the Gauss sum of Proposition 5.4 exactly
(this was done by Walling, see the remark after the statement) and compute the resulting sum
in W of Proposition 4.2, which is a slightly modified symplectic Kloosterman sum modulo p. The
improved bounds will depend on the rank of various blocks of the parameters Q and T . Thus the
non-generic bound will be quite technical to state and use. In any case, this would be limited in
applications without a corresponding bound for a sum over C = pIn as in Theorem 1.2.

In Section 6, we give an application of Theorem 1.1 in the spirit of an article of El-Baz, Lee and
Strömbergsson [ELS]. Sums over a general C can be factorized with respect to the divisors of its
elementary divisors. This is detailed in Section 2. We combine Theorems 1.1 and 1.2 to get a general
bound. Then we apply it to the following equidistribution problem. Let Tn = Xn(R/Z) be the set
of n by n symmetric matrices modulo 1. Let C ∈ Matn(Z) be such that det(C) ̸= 0. Consider

SC :=

{
(C−tAt, C−1D) ∈ Tn × Tn

∣∣∣∣ (A ∗
C D

)
∈ X(C)

}
.

Theorem 1.3. Let C0 ∈ Matn(Z) be such that det(C0) ̸= 0 and m ∈ N. The set SmC0 equidis-
tributes effectively in Tn × Tn = Xn(R/Z)2 as m → ∞.

A more precise statement with an explicit rate of convergence is given in Section 6. The case
n = 1 was presented in [EMSS].
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1.1. Notations. We denote the set of n by n symmetric matrices by Xn. If needed, we precise
the ring in parenthesis. Half-integral symmetric matrices are elements of X (R) with half-integral
coefficients and integral diagonal. They correspond to quadratic forms.

Let M be a square matrix. We write e(M) := e2πi tr(M). Note that for a 1 by 1 matrix, this is
consistent with the notation frequently used in number theory. If M is invertible, we write M−t for
the transpose of the inverse of M . For two square matrices M,N , we write M [N ] := N tMN . Let
p be a prime number and M ∈ Matn(Z) be an integral matrix (or a half-integral matrix if p ̸= 2).
We write rkp(M) for the rank of the reduction modulo p of the matrix M . We write 0n for the n
by n matrix with only zeros.

We will consider (half-)integral matrices modulo various sets. Since matrix multiplication is non-
commutative, we will always precise the full set for the reduction. For example, for a matrix C, we
write [C] := CMatn(Z) +Matn(Z)C. We will consider matrices modulo [C] in Section 5.

We write (a, . . . , ar) to denote the greatest common divisor between a1, . . . , ar. If some ai is
replaced by an integral matrix, we mean by this notation the greatest common divisor of all the
coordinates in the matrix and the rest of the aj . We write a | b to denote that a divides b and
(p∞, a) to denote the largest power of p that divides a. We use the Vinogradov symbols ≪ and ≫,
with index to precise the dependency of the implicit constant if needed.

1.2. Acknowledgment. The author thanks Valentin Blomer and Árpád Tóth for their help and
guidance on this project. The research towards this paper was supported by the MTA–RI Lendület
“Momentum” Analytic Number Theory and Representation Theory Research Group.

2. Elementary properties

2.1. Symplectic matrices. Let n be a positive integer. The symplectic group is

Sp2n(R) := {M ∈ Mat2n(R) | M tJM = J}
with J =

(
0 In

−In 0

)
. Unless stated otherwise, we always split elements of the symplectic group in

n by n blocks. We write Sp2n(Z) for the set of elements of Sp2n(R) that have integral entries. We
write

Γ∞ := {
(
In X
0 In

)
| X ∈ Matn(Z) symmetric} ⊆ Sp2n(Z).

Lemma 2.1. Let M = (A B
C D ) ∈ Mat2n(R) be a matrix. The following are equivalent:

(1) M is symplectic.
(2) AtC and BtD are symmetric and AtD − CtB = In.
(3) ABt and CDt are symmetric and DAt − CBt = In.

Moreover, suppose that det(C) ̸= 0. Then M is symplectic if and only if AtC and CDt are symmetric
and DAt − CBt = In.

Proof. The first equivalences are direct consequences of the definition. For the last statement,
we only need to check that ABt is symmetric. Using the hypothesis above, we see that Bt =
C−1(DAt − In) and that AC−1 and C−1D are symmetric. Then

ABt = AC−1(DAt − In) = ADtC−tAt − C−tAt = (ADt − In)C
−tAt = BAt.

□

Remark. Suppose we are given matrices A,C,D with C invertible and AtC and CDt symmetric.
There is a unique way to complete the blocks to a symplectic matrix (A B

C D ) by setting B = (ADt−
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In)C
−t. Moreover, if all the matrices are integral and ADt = In (mod Matn(Z)Ct), we get an

integral symplectic matrix (A B
C D ).

Definition 2.2. Let C ∈ Matm,n(Z) and r = rk(C). There exists matrices U ∈ GLm(Z), V ∈
GLn(Z) such that

UCV =

(
C ′

0n−r

)
with C ′ = diag(c1, . . . , cr) and c1 | c2 | · · · | cr. The matrix UCV is called the Smith normal form
of C and the positive integers c1, . . . , cr are called the elementary divisors of C. They are unique.
We have the formula

di(C) = c1 · · · ci
where di(C) is the greatest common divisor of all minors of size i in C.

Definition 2.3. A symmetric pair (C,D) consists of two integral matrices such that CDt is sym-
metric. A coprime symmetric pair (C,D) consists of two integral matrices that are the bottom line
of an integral symplectic matrix ( ∗ ∗

C D ) ∈ Sp2n(Z).

Proposition 2.4. Let C,D be two square integral matrices of size n. The following are equivalent:

(1) (C,D) is a coprime symmetric pair.
(2) (D,C) is a coprime symmetric pair.
(3) CDt is symmetric and for all G ∈ GLn(Q), G

(
C D

)
is integral if and only if G ∈ GLn(Z).

(4) CDt is symmetric and the greatest common divisor of all the minors of size n in
(
C D

)
is 1.

Proof. (1) ⇔ (2):

(
A B
C D

)
is symplectic if and only if

(
−B −A
D C

)
is symplectic.

(3) ⇔ (4): let
(
F 0

)
be the Smith normal form of

(
C D

)
. That is, there exists U ∈ GLn(Z),

V ∈ GL2n(Z) such that U
(
C D

)
V =

(
F 0

)
. Let G ∈ GLn(Q). Then

G
(
C D

)
is integral ⇔ GU−1F is integral.

Note that (4) is equivalent to F = In. If (4) holds, then G must be integral, so (3) holds. Conversely,
if (4) does not hold, then fnn ̸= 1. Then the matrix G = UF−1 is not integral and contradicts (3).

(1) ⇒ (3): if

(
A B
C D

)
is an integral symplectic matrix, then

G = G · In = GDAt −GCBt.

Clearly, if GC and GD are integral, then G is integral.
(3) ⇒ (1): See [Sie], Lemma 42. Alternatively (4) ⇒ (1) is proven in [New2]. □

Lemma 2.5.

(1) Let p be a prime. If C is a diagonal matrix of the form diag(pσ1 , . . . , pσn) with σ1, . . . , σn ≥
1, then (C,D) is a coprime symmetric pair if and only if CtD is symmetric and p ∤ det(D).

(2) If (A B
C D ) is a symplectic matrix, then (A,B), (At, Ct), (Bt, Dt) and (C,D) are coprime

symmetric pairs.

Proof.

(1) Let (C,D) be a symmetric pair. By Proposition 2.4 (4), (C,D) is a coprime symmetric pair
if and only if one of its n by n minors is coprime to p. Since any minor with a column of C
is divisible by p, it is necessary (and sufficient) that (det(D), p) = 1.
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(2) This is clear since if (A B
C D ) is a symplectic matrix, then so are(

−C −D
A B

)
,

(
−Bt −Dt

At Ct

)
,

(
At Ct

Bt Dt

)
.

□

We can characterize elements of the double quotient

X(C) := Γ∞\{(A B
C D ) ∈ Sp2n(Z)}/Γ∞.

Proposition 2.6. Let C be an invertible matrix. The set X(C) is in bijection with

X̃(C) := {D (mod CMatn(Z)) | (C,D) coprime symmetric pair},
by sending a matrix to its bottom-right block D.

Remark. This proves Equation (1.2).

Proof. Clearly (C,D) must always form a coprime symmetric pair. We check which pairs are in the
same class in X(C). Suppose first that det(C) ̸= 0. We show that if we have two matrices with
equal bottom blocks, (

A1 B1

C D

)
,

(
A2 B2

C D

)
,

then they are equivalent in Γ∞\ Sp2n(R). We have

A1D
t −B1C

t = In, A2D
t −B2C

t = In ⇒ (A1 −A2)D
t = (B1 −B2)C

t.

So B1 −B2 = (A1 −A2)D
tC−t = (A1 −A2)C

−1D. Then

(A1 −A2)C
−1
(
C D

)
=
(
A1 −A2 B1 −B2

)
∈ Matn,2n(Z).

By Proposition 2.4, X = (A1 − A2)C
−1 ∈ Matn(Z) and we also have XD = B1 − B2. Note also

that X is symmetric. Then(
In X

In

)(
A1 B1

C D

)
=

(
A1 +XC B1 +XD

C D

)
=

(
A2 B2

C D

)
.

Now, let (A B
C D ) ∈ Sp2n(Z) and X1, X2 ∈ Xn(Z). We have(

In X1

In

)(
A B
C D

)(
In X2

In

)
=

(
∗ ∗
C CX2 +D

)
.

So two matrices are in the same class in X(C) if and only if their bottom-right block is equal
(mod CMatn(Z)). □

2.2. Factorization of Kloosterman sums. In this section, we reduce the study of the Kloost-
erman sum to the case where C is a diagonal matrix consisting only of prime powers. The two
following lemmas are generalizations to n ≥ 2 of Lemmas 1, 2 and 3 in [Kit]. The proof is similar,
except for the bijection f in Lemma 2.8, where we give more details.

Lemma 2.7. Let C ∈ Matn(Z) be an invertible matrix and Q,T be two symmetric half-integral
matrices. Let U, V ∈ GLn(Z). Then

Kn(Q,T ;C) = Kn(Q[U ], T [V ];U tCV ).
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Proof. Let X(C) be the double quotient as above. Then(
U−1

U t

)
X(C)

(
V

V −t

)
= X(U tCV ).

More precisely, the above equation defines a bijection between the two sets. This is because the

matrices
(

U−1

Ut

)
and

(
V

V −t

)
normalize Γ∞ since U, V ∈ GLn(Z) and because(

U−1

U t

)(
A B
C D

)(
V

V −t

)
=

(
U−1AV U−1BV −t

U tCV U tDV −t

)
.

Since this identity can be reversed, we have a bijection between X(C) and X(U tCV ). The lemma
is then established by invariance of the trace under conjugation:

K(Q[U ], T [V ];U tCV ) =
∑

(A B
C D )∈X(UtCV )

e(A(U tCV )−1Q[U ] + (U tCV )−1DT [V ])

=
∑

(A B
C D )∈X(C)

e((U−1AV )(U tCV )−1Q[U ] + (U tCV )−1(U tDV −t)T [V ])

=
∑

(A B
C D )∈X(C)

e(AC−1Q+ C−1DT ).

□

Lemma 2.8. Let C = FG ∈ Matn(Z) be invertible diagonal matrices in Smith normal form with
(fnn, gnn) = 1. Let r, s ∈ Z be such that rfnn + sgnn = 1. Let Q,T be two symmetric half-integral
matrices. Then

Kn(Q,T ;C) = Kn(Q[Ḡ], T ;F ) ·Kn(Q[F̄ ], T ;G),

where F̄ = rfnnF
−1 and Ḡ = sgnnG

−1.

Proof. Note that F̄F +ḠG = In. First, we show that we have a bijection f : X(C) → X(F )×X(G)
given by (

A B
C D

)
7→
[(

GA GB − F̄AtD
F ḠD

)
,

(
FA FB − ḠAtD
G F̄D

)]
.(2.1)

Suppose that (A B
C D ) ∈ Sp2n(Z). Then AtGF = AtC and (BtG − DtAF̄ )ḠD = sgnnB

tD −
rscnnD

tAC−1D are symmetric matrices. We used that C,F and G are diagonal. Moreover

AtGḠD − F (GB − F̄AtD) = sgnnA
tD − CB + rfnnA

tD = AtD − CtB = In.

So the first component on the right-hand side of Equation (2.1) is in Sp2n(Z). The second is as
well, since we can exchange the roles of F and G. Conversely suppose that the right-hand side of
Equation (2.1) is in Sp2n(Z)× Sp2n(Z). To construct the inverse, consider a pair((

AF BF

F DF

)
,

(
AG BG

G CG

))
∈ Sp2n(Z)× Sp2n(Z)

It inverse image (A B
C D ) is given by

A = ḠAF + F̄AG, C = FG, D = GDF + FDG,

B = 2F̄ ḠAtD + ḠBF + F̄BG.



8 GILLES FELBER

It is clear that this is an inverse for f . We need to check that f and its inverse are well defined,
i.e. they factor through the double quotient. By Proposition 2.6, we only have to check the bottom
lines of the maps. We have(

∗ ∗
C D

)(
In X

In

)
=

(
∗ ∗
C D + CX

)
7→
[(

∗ ∗
F ḠD + ḠCX

)
,

(
∗ ∗
G F̄D + F̄CX

)]
.

Since ḠCX = sgnnFX and F̄CX = rfnnGX are multiples of FX respectively GX, theses are
matrices equivalent to the images of ( ∗ ∗

C D ). Conversely, we have[(
∗ ∗
F DF + FX

)
,

(
∗ ∗
G DG +GY

)]
7→
(

∗ ∗
FG GDF + FDG + FG(X + Y )

)
.

The image is clearly in ( ∗ ∗
FG GDF+FDG

) Γ∞.
Therefore f has an inverse and is injective. Since X(C) and X(F )×X(G) are finite, it suffices to

show that they have the same cardinality to show that f is bijective. Let X̃(C) be as in Proposition

2.6. We have a function g : X̃(C) 7→ X̃(F )× X̃(G) given by D 7→ (ḠD, F̄D). This is a restriction
of f to the bottom-right block. Its inverse is

(DF , DG) 7→ GDF + FDG.

If (C,D) is a coprime symmetric pair, so is (ḠC, ḠD). Conversely, let D = GDF + FDG. Clearly
CDt is symmetric. We need to show that (C,D) is a coprime symmetric pair. We show that the
rank modulo p of

(
C D

)
is n for all primes p. Meaning that the greatest common divisor of all

minors of size n in
(
C D

)
is coprime to p. By Proposition 2.4, this is equivalent. If we multiply(

C D
)
on the left or on the right by a matrix M with p ∤ det(M), then the rank modulo p does

not change. Suppose that p ∤ gnn. Then

rkp
(
C D

)
= rkp

(
Ḡ
(
FG GDF + FDG

)(In −ḠDG

In

))
= rkp

(
F DF

)
= n.

If p | gnn, we do the same with F instead of G. This show that g is a bijection and that X(C) and
X(F )×X(G) have the same cardinality. Therefore f is also a bijection.

Finally, we compute

K(Q,T ;C) =
∑

(A B
C D )∈X(C)

e(AC−1Q+ C−1DT )

=
∑

(
AF BF

F DF

)
∈X(F )

∑
(
AG BG

G DG

)
∈X(G)

e((ḠAF + F̄AG)(FG)−1Q+ (FG)−1(GDF + FDG)T )

=
∑

(
AF BF

F DF

)
∈X(F )

e(ḠAFF
−1G−1Q+ F−1DFT )

·
∑

(
AG BG

G DG

)
∈X(G)

e(F̄AGF
−1G−1Q+G−1DGT )

=
∑

(
AF BF

F DF

)
∈X(F )

e(ḠAFF
−1G−1(F̄F + ḠG)Q+ F−1DFT )
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·
∑

(
AG BG

G DG

)
∈X(G)

e(F̄AGF
−1G−1(F̄F + ḠG)Q+G−1DGT )

=
∑

(
AF BF

F DF

)
∈X(F )

e(AFF
−1Q[Ḡ] + F−1DFT )

∑
(
AG BG

G DG

)
∈X(G)

e(AGG
−1Q[F̄ ] +G−1DGT )

· e(ḠAFG
−1F̄Q+ F̄AGF

−1ḠQ)

In the final line, since AF = GA and AG = FA, we have

e(ḠAFG
−1F̄Q+ F̄AGF

−1ḠQ) = e(sgnnAG−1F̄Q+ rfnnAF−1ḠQ) = e(2AF̄ḠQ) = 1.

We conclude that
K(Q,T ;C) = K(Q[Ḡ], T ;F ) ·K(Q[F̄ ], T ;G).

□

Lemma 2.9. Let C ∈ Matn(Z) be an invertible matrix and Q,T be two symmetric half-integral
matrices. Then

Kn(Q,T ;C) = Kn(T,Q;Ct).

Proof. Note that (A B
C D ) ∈ Sp2n(Z) if and only if

(
Dt Bt

Ct At

)
∈ Sp2n(Z). This defines a bijection

X(C) → X(Ct) because for a symmetric matrix X ∈ X (Z), we have(
In X

In

)(
A B
C D

)
=

(
A+XC B +XD

C D

)
7→

(
Dt Bt

Ct At

)(
In X

In

)
,(

A B
C D

)(
In X

In

)
=

(
A AX +B
C CX +D

)
7→

(
In X

In

)(
Dt Bt

Ct At

)
.

Then we get

K(Q,T ;Ct) =
∑

(
A B
Ct D

)
∈X(Ct)

e(AC−tQ+ C−tDT )

=
∑

(A B
C D )∈X(C)

e(DtC−tQ+ C−tAtT )

=
∑

(A B
C D )∈X(C)

e(C−1DQ+AC−1T )

= K(Q,T ;C).

□

Applying Lemmas 2.7 and 2.8, we can reduce to a matrix C of the shape

C =


pσ1

pσ2

. . .

pσn


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with 0 ≤ σ1 ≤ · · · ≤ σn. We make this more precise in the proof of Proposition 6.1. With such a C,
the set X(C) is in bijection with

X̃(C) :=

D =


d11 d12 · · · d1n

pσ2−σ1d12 d22 · · · d2n
...

...
. . .

...
pσn−σ1d1n pσn−σ2d2n · · · dnn


∣∣∣∣∣∣∣∣∣

∀i ≤ j
dij (mod pσi),
(det(D), p) = 1

(2.2)

If σi = 0, we fix dii = 1 and dij = 0 for i < j. This is direct from Proposition 2.6 and Lemma 2.5.
Therefore

|X(C)| ≤
n∏

i=1

p(n−i+1)σi .

This prove the trivial bound (1.2) in the case of a matrix C of the shape diag(pσ1 , . . . , pσn).

Definition 2.10. Given a matrix D ∈ X̃(C), we define D̄ = d adj(D) where d det(D) = 1
(mod pσn) and adj(D) is the adjugate matrix of D. Then D̄D = DD̄ = In (mod pσn Matn(Z)). In
particular, the matrix B = C−1(D̄D − In) is integral and we have(

D̄t B
C D

)
∈ X(C).

Note also that (C, D̄) is also a coprime symmetric pair. Finally, we conclude that

K(Q,T ;C) =
∑

(A B
C D )∈X(C)

e(AC−1Q+ C−1DT ) =
∑

D∈X̃(C)

e(C−1D̄Q+ C−1DT ).(2.3)

To close this section, we consider a degenerated case.

Proposition 2.11. Let C = diag(Is, p
σs+1 , . . . , pσn) with σs+1 ≥ 1. Let Q and T be half-integral

symmetric matrices. Let Q3, T3, C3 be the n− s by n− s bottom-right block of respectively Q,T,C.
Then

Kn(Q,T ;C) = Kn−s(Q3, T3;C3).

If s = n, we interpret K0 as 1.

Proof. Recall that if D ∈ X̃(C) with C as in the proposition, then dij = δij for i ≤ s or j ≤ s. We

have a bijection X̃(C3) 7→ X̃(C) given by

D3 7→
(
Is

D3

)
.

Moreover, if D3A
t
3 = In−s (mod C3 Matn(Z)), then(

Is
D3

)(
Is

A3

)t

= In (mod CMatn(Z)).

Then

tr

((
Is

A3

)
C−1

(
Q1 Q2

Qt
2 Q3

)
+ C−1

(
Is

D3

)(
T1 T2

T t
2 T3

))
= tr

(
A3C

−1
3 Q3 + C−1

3 D3T3

)
and Kn(Q,T ;C) = Kn−s(Q3, T3;C3). □



SYMPLECTIC KLOOSTERMAN SUMS FOR Sp(2n) WITH POWERFUL MODULI 11

3. Taylor expansion argument

In this section, we consider the case C = diag(pσ1 , . . . , pσn) with 2 ≤ σ1 ≤ · · · ≤ σn. Our goal is
to prove Proposition 3.4. The proof’s strategy is to do a finite Taylor expansion of the coefficients
with respect to smaller prime powers (also known as p-adic stationary phase). Recall Equation

(2.2) and Definition 2.10. Let µi = ⌊σi

2 ⌋ for i = 1, . . . , n and C̃ = diag(pµ1 , . . . , pµn). Given a

fixed D1 ∈ X̃(C), we consider all the D ∈ X̃(C) such that D = D1 (mod C̃Matn(Z))). We write

D = D1 + C̃D2. Clearly, we have

C̃D2C = (D −D1)C = C(Dt −Dt
1) = CDt

2C̃.

So (CC̃−1, D2) is a symmetric pair. Let D̄t
1 as in Definition 2.10. Our first goal is to construct,

given C,D1, D̄1, a symplectic matrix (A B
C D ) from any D = D1 (mod C̃Matn(Z)) such that (C,D)

is a symmetric pair and with an explicit formula for A = D̄t
1. First, we prove a small but very useful

lemma.

Lemma 3.1. Let F = diag(pa1 , . . . , pan) and G = diag(pb1 . . . , pbn) be two diagonal matrices with
increasing prime powers on the diagonal and H be an integral matrix such that (F,H) is a symmetric
pair. If for all i ≥ j

bi − bj ≤ ai − aj ,

then G−1HG is an integral matrix.

Proof. Since FHt = HF , the matrix F−1HF = Ht is integral. That is, for i ≥ j

pai−aj | hij .

Since bi − bj ≤ ai − aj , we have that G−1HG is integral as well. □

Lemma 3.2. Let D1, D2 ∈ Matn(Z) be such that (C,D1) is a coprime symmetric pair and

(CC̃−1, D2) is a symmetric pair. We have the following congruences:

p(C̃D2D̄1)
2 = 0 (mod CMatn(Z)),

(C̃D2D̄1)
3 = 0 (mod CMatn(Z)).

Proof. Recall that (C, D̄1) is also a coprime symmetric pair. For all i ≥ j, we have

µi − µj ≤ σi − σj ⇔
⌈σj

2

⌉
≤
⌈σi

2

⌉
.

By Lemma 3.1, the matrix C̃−1D̄1C̃ is integral. Moreover (CC̃−1, D2) is a symmetric pair, so

D2D̄1C̃ = D2C̃(C̃−1D̄1C̃) = CC̃−1Dt
2(C

−1C̃2)(C̃−1D̄1C̃).

We get
(C̃D2D̄1)

2 = CDt
2(C

−1C̃2)(C̃−1D̄1C̃)D2D̄1.

Note that everything in the above equation is integral except the product C−1C̃2. The k-th coeffi-
cient of the diagonal matrix pC−1C̃2 is 2µk − σk + 1 ≥ 0, so the matrix is integral. In conclusion,
for some matrix M ∈ Matn(Z), we have

p(C̃D2D̄1)
2 = CM

and the congruence holds. For the second equation in the proposition, since every power of p in C̃
is at least one, we can write

(C̃D2D̄1)
3 = p(C̃D2D̄1)

2(p−1C̃D2D̄1).
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By the first equation, this is in CMatn(Z). □

Lemma 3.3. Let D1, D2 ∈ Matn(Z) be such that (C,D1) is a coprime symmetric pair and

(CC̃−1, D2) is a symmetric pair. Write D = D1 + C̃D2 and

At = D̄1(In − C̃D2D̄1 + (C̃D2D̄1)
2).

Then Bt = C−1(DAt − In) is an integral matrix and the matrix(
A B
C D

)
∈ Sp2n(Z).

Proof. By the discussion at the start of this section, we know that (C,D) is a symmetric pair. By
Lemma 2.1, we need to prove two things: (1) AtC = CtA. (2) Bt is integral. First, since (C, D̄1)

and (CC̃−1, D2) are symmetric pairs, we have

C̃D2D̄1C = C̃D2CD̄t
1 = CDt

2C̃D̄t
1.

Therefore

AtC = D̄1(In − C̃D2D̄1 + (C̃D2D̄1)
2)C = CD̄t

1(In −Dt
2C̃D̄t

1 + (Dt
2C̃D̄t

1)
2) = CtA.

Next, recall that D1D̄1 = In + CBt
1. We compute

DAt = (D1 + C̃D2)D̄1(In − C̃D2D̄1 + (C̃D2D̄1)
2)

= (In + C̃D2D̄1)(In − C̃D2D̄1 + (C̃D2D̄1)
2) + CBt

1(In − C̃D2D̄1 + (C̃D2D̄1)
2)

= (In + (C̃D2D̄1)
3) + CBt

1(In − C̃D2D̄1 + (C̃D2D̄1)
2)

By Lemma 3.2, (C̃D2D̄1)
3 = 0 (mod CMatn(Z)). In conclusion, Bt is integral since

DAt = In (mod CMatn(Z)).
□

Let D1 ∈ X̃(C). We consider the set

{D ∈ X̃(C) | D = D1 (mod C̃Matn(Z))}.
By the discussion at the start of the section, the matrices in this set are exactly the matrices of the
form D1 + C̃D2 for a matrix D2 (mod CC̃−1 Matn(Z)) such that (CC̃−1, D2) is a symmetric pair.
By Lemma 3.3, we have a bijective map

X̃1(C)× X̃2(C) → X̃(C),

(D1, D2) 7→ D1 + C̃D2

with X̃1(C) a set of representatives of the matrices in X̃(C) modulo C̃Matn(Z) and

X̃2(C) = {D2 (mod CC̃−1 Matn(Z)) | (CC̃−1, D2) symmetric pair}.

Moreover, given a pair (D1, D2), a corresponding symplectic matrix in X(C) is
(

A ∗
C D1+C̃D2

)
with

At = D̄1(In − C̃D2D̄1 + (C̃D2D̄1)
2).

We can now split K(Q,T ;C) into two sums over X̃1(C) and X̃2(C). We have

K(Q,T ;C) =
∑

D∈X̃(C)

e(C−1AtQ+ C−1DT )
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=
∑

D1∈X̃1(C)

∑
D2∈X̃2(C)

e(C−1D̄1(In − C̃D2D̄1 + (C̃D2D̄1)
2)Q+ C−1(D1 + C̃D2)T )

=
∑

D1∈X̃1(C)

e(C−1D̄1Q+ C−1D1T )

·
∑

D2∈X̃2(C)

e(C−1D̄1(−C̃D2D̄1 + (C̃D2D̄1)
2)Q+ C−1C̃D2T )

=
∑

D1∈X̃1(C)

e(C−1D̄1Q+ C−1D1T )

·
∑

D2∈X̃2(C)

e(C−1C̃D2(T − D̄1QD̄t
1) + D̄t

1C
−1(C̃D2D̄1)

2Q).(3.1)

On the last line, we used again that is a symmetric pair. Note that

pD̄t
1C

−1(C̃D2D̄1)
2Q ∈ Matn(Z)

by Lemma 3.2. We can be more precise. By Lemma 3.1, the matrices C̃−1D̄1C̃ and C−1C̃D̄1CC̃−1

are integral. We compute

C−1(C̃D2D̄1)
2 = Dt

2C
−1C̃D̄1C̃D2D̄1

= Dt
2(C

−1C̃2)(C̃−1D̄1C̃)D2D̄1

= Dt
2(C

−1C̃D̄1CC̃−1)(C−1C̃2)D2D̄1.(3.2)

We write D2 = D2,1 + CC̃−2D2,2. By Equation (3.2), we have

e(D̄t
1C

−1(C̃D2D̄1)
2Q) = e(D̄t

1C
−1(C̃D2,1D̄1)

2Q),

because any factor with D2,2 is integral.

We have a bijection D2 7→ D2,1 + CC̃−2D2,2 between the summand sets X̃2(C) → X̃2,1(C) ×
X̃2,2(C) with

X̃2,1(C) = {D2,1 (mod CC̃−2 Matn(Z)) | (CC̃−1, D2,1) symmetric pair},

X̃2,2(C) = {D2,2 (mod C̃Matn(Z)) | (C̃,D2,2) symmetric pair}.

Therefore, we showed that in Equation (3.1), the sum over X̃2(C) can be rewritten as∑
D2,1∈X̃2,1(C)

e(C−1C̃D2,1(T−D̄1QD̄t
1)+D̄t

1C
−1(C̃D2,1D̄1)

2Q)
∑

D2,2∈X̃2,2(C)

e(C̃−1D2,2(T−D̄1QD̄t
1)).

Suppose here that p ̸= 2. Applying Lemma 5.2 that we will prove in Section 5, the sum over X̃2,2(C)
vanishes unless

T = D̄1QD̄t
1 (mod [C̃])

where [C̃] = C̃Matn(Z)+Matn(Z)C̃. If the congruence holds, then all the terms are 1 and the sum
is ∣∣∣X̃2,2(C)

∣∣∣ = n∏
i=1

p(n−i+1)µi

In conclusion, we showed the following in this section.
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Proposition 3.4. Let p be an odd prime. Let C = diag(pσ1 , . . . , pσn) be a matrix with 2 ≤ σ1 ≤
· · · ≤ σn. Following the notation introduced in this section, we have

K(Q,T ;C) =

n∏
i=1

p(n−i+1)µi

∑
D1∈X̃1(C)

T=D̄1QD̄t
1 ([C̃])

e(C−1D̄1Q+ C−1D1T )

·
∑

D2,1∈X̃2,1(C)

e(C−1C̃D2,1(T − D̄1QD̄t
1) + D̄t

1C
−1(C̃D2,1D̄1)

2Q).

In this section, we consider the case C = diag(pσ1 , . . . , pσn) with 2 ≤ σ1 ≤ · · · ≤ σn. Our goal is
to prove Proposition 3.4. The proof’s strategy is to do a finite Taylor expansion of the coefficients
with respect to smaller prime powers (also known as p-adic stationary phase). Recall Equation

(2.2) and Definition 2.10. Let µi = ⌊σi

2 ⌋ for i = 1, . . . , n and C̃ = diag(pµ1 , . . . , pµn). Given a

fixed D1 ∈ X̃(C), we consider all the D ∈ X̃(C) such that D = D1 (mod C̃Matn(Z))). We write

D = D1 + C̃D2. Clearly, we have

4. Block decomposition

In this section, we consider C = diag(pσ1 , . . . , pσn) with σ1 ≥ 1 and σn ≥ 2. Our goal is
generalizing the results of Section 3 to the case σ1 = 1. The idea is to write

C =

(
pIs

C1

)
with all the prime powers in C1 being at least p2. For this section, we fix s as the larger index such
that σs = 1. We decompose all the matrices appearing in our sum with respect to the blocks of C,
that is

Q =

(
Q1 Q2

Qt
2 Q3

)
, T =

(
T1 T2

T t
2 T3

)
with Q1 and T1 blocks of size s by s. For a matrix D ∈ X̃(C), we write

D =

(
W X
Y Z

)
with W a block of size s by s. Since (C,D) is a coprime symmetric pair, we have(

pW XC1

pY ZC1

)
= DC = CDt =

(
pW t pY t

C1X
t C1Z

t

)
.(4.1)

In particular,W is symmetric and Y = p−1C1X
t is equal to 0 (mod pMatn−s,s(Z)). Thus det(D) =

det(W ) det(Z) (mod p) and p ∤ det(W ), det(Z). We also see that (pIs,W ) and (C1, Z) are coprime
symmetric pairs.

We want to compute the inverse of D modulo a high-enough prime power.

Lemma 4.1. Let (C,D) be a coprime symmetric pair with D = (W X
Y Z ) ∈ Matn(Z), where W a

block of size s by s. Let U = Z − Y W̄X be the Schur complement of W . Then (C1, U) is a coprime
symmetric pair and

At =

(
W̄ + W̄XŪY W̄ −W̄XŪ

−ŪY W̄ Ū

)
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is such that DAt = In (mod CMatn(Z)). Moreover (At, C) is a symmetric pair and, with Bt =
(DAt − In)C

−1, we have (
A B
C D

)
∈ Sp2n(Z).

Here, W̄ and Ū are as in Definition 2.10.

Remark. The shape of At comes from the inversion formula for block matrices.

Proof. Since Y = p−1C1X
t = 0 (mod pMatn−s,s(Z)) by Equation (4.1), we have

det(U) = det(Z) ̸= 0 (mod pMatn−s(Z)).
Note that if W is symmetric, so is W̄ . By Equation (4.1), we get

UC1 = (Z − Y W̄X)C1 = C1(Z
t − C1X

tW̄ tY t) = C1U
t.

So (C1, U) is a coprime symmetric pair. Let Ū be as in Definition 2.10. We have two symplectic
matrices (

W̄ t BW

pIs W

)
∈ Sp2s(Z),

(
Ū t BU

C1 U

)
∈ Sp2(n−s)(Z).

In particular WW̄ = Is + pBt
W and UŪ = In−s + C1B

t
U . We compute

DAt =

(
W X
Y U + Y W̄X

)(
W̄ + W̄XŪY W̄ −W̄XŪ

−ŪY W̄ Ū

)
=
(

Is+pBt
W+(Is+pBt

W )XŪY W̄−XŪY W̄ −(Is+pBt
W )XŪ+XŪ

Y W̄+Y W̄XŪY W̄−(In−s+C1B
t
U )Y W̄−Y W̄XŪY W̄ −Y W̄XŪ+In−s+C1B

t
U+Y W̄XŪ

)
=

(
Is + pBt

W (Is +XŪY W̄ ) −pBt
WXŪ

−C1B
t
UY W̄ In−s + C1B

t
U

)
= In (mod CMatn(Z)).

By Lemma 2.1, we only need to show that (At, C) is a symmetric pair to conclude the proof of
the theorem. Applying Equation (4.1), we get

AtC =

(
p(W̄ + W̄XŪY W̄ ) −W̄XŪC1

−pŪY W̄ ŪC1

)
=

(
p(W̄ t + W̄ tY tŪ tXtW̄ t) −pW̄ tY tŪ t

−C1Ū
tXtW̄ t C1Ū

t

)
= CA.

□

Let D = (W X
Y Z ) ∈ X̃(C) be a matrix modulo CMatn(Z) such that (C,D) is a coprime sym-

metric pair. Then W , X and Z are matrices modulo respectively pMatn(Z), pMats,n−s(Z) and
C1 Matn−s(Z) and Y is determined by Y = p−1C1X

t. It is easy to see that U = Z − Y W̄X is also
a matrix modulo C1 Matn−r(Z). We saw at the beginning of this section that (pIr,W ) and (C1, U)

are coprime symmetric pair. Thus we get matrices W ∈ X̃(pIs) and U ∈ X̃(C1). We get a bijection

X̃(C) → X̃(pIs)×Mats,n−s(Z/pZ)× X̃(C1),(
W X
Y Z

)
7→ (W,X,Z − Y W̄X),

with the inverse map given by Lemma 4.1:

(W,X,U) 7→
(

W X
p−1C1X

t U + Y W̄X

)
.
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We can now compute the Kloosterman sum with respect to these sets. Using Y = p−1C1X
t, we

have

K(Q,T ;C) =
∑

D∈X̃(C)

e(C−1D̄Q+ C−1DT )

=
∑

W∈X̃(pIs)

∑
X (pMats,n−s(Z))

∑
U∈X̃(C1)

e

((
p−1Is

C−1
1

)(
W̄ + W̄XŪY W̄ −W̄XŪ

−ŪY W̄ Ū

)(
Q1 Q2

Qt
2 Q3

)

+

(
p−1Is

C−1
1

)(
W X
Y U + Y W̄X

)(
T1 T2

T t
2 T3

))
=
∑

W,X,U

e
(
p−1[W̄Q1 + W̄XŪY W̄Q1 − W̄XŪQt

2 +WT1 +XT t
2 ]
)

· e
(
C−1

1 [−ŪY W̄Q2 + ŪQ3 + Y T2 + UT3 + Y W̄XT3]
)
.

Note that the size of the matrices is not the same on the last two lines. Since all the prime power
in C1 are at least p2, we have

e(p−1W̄XŪY W̄Q1) = e(W̄XŪ(p−2C1)X
tW̄Q1) = 1.

Note also that, since W̄ is symmetric, we have

e(−p−1W̄XŪQt
2) = e(−W̄Y tC−1

1 ŪQt
2) = e(−C−1

1 ŪQt
2W̄Y t),

e(C−1
1 Y T2) = e(p−1XtT2) = e(p−1XT t

2).

In conclusion, we have

K(Q,T ;C) =
∑

W,X,U

e
(
p−1[W̄Q1 +WT1 + 2XT t

2 ]
)

· e
(
C−1

1 [−Ū(Y W̄Q2 +Qt
2W̄Y t) + ŪQ3 + UT3 + Y W̄XT3]

)
.(4.2)

The sum in U is a Kloosterman sum, similar to the one in the last section. The matrix C1 has all
its prime powers larger or equal to p2 and

SU :=
∑

U∈X̃(C1)

e(C−1
1 Ū(Q3 − Y W̄Q2 −Qt

2W̄Y t) + C−1
1 UT3) = Kn−s(Q̃, T3;C1)

with Q̃ = Q3 − (Y W̄Q2 + Qt
2W̄Y t) (note that this is symmetric). Applying Proposition 3.4 and

adapting the notation there, we get

SU =

n∏
i=s+1

p(n−i+1)µi

∑
U1∈X̃1(C1)

T3=Ū1Q̃Ūt
1 ([C̃1])

e(C−1
1 Ū1Q̃+ C−1

1 U1T3)

·
∑

U2,1∈X̃2,1(C1)

e(C−1
1 C̃1U2,1(T3 − Ū1Q̃Ū t

1) + Ū t
1C

−1
1 (C̃U2,1Ū1)

2Q̃).

Since Y = p−1C1X
t and (C1Ū1) is a coprime symmetric pair, we have

Ū1Q̃Ū t
1 = Ū1Q3Ū1 − p−1C1Ū

t
1X

tW̄Q2Ū
t
1 − p−1Ū1Q

t
2W̄XŪ1C1.

Note that
p−1C1Ū

t
1X

tW̄Q2Ū
t
1 + p−1Ū1Q

t
2W̄XŪ t

1C1 ∈ [C̃1]
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since the prime powers in C1 are all at least p2. Using that (C1C̃
−1
1 , U2,1) is a symmetric pair and

Lemma 3.2, we can also replace Q̃ by Q3 in the second line of the equation for SU . We get

SU =

n∏
i=s+1

p(n−i+1)µi

∑
U1∈X̃1(C1)

T3=Ū1Q3Ū
t
1 ([C̃1])

e(C−1
1 Ū1Q3 + C−1

1 U1T3)e(−C−1
1 Ū1(Y W̄Q2 +Qt

2W̄Y t))

·
∑

U2,1∈X̃2,1(C1)

e(C−1
1 C̃1U2,1(T3 − Ū1Q3Ū

t
1) + Ū t

1C
−1
1 (C̃U2,1Ū1)

2Q3).

Finally, we insert SU in Equation (4.2). We get

K(Q,T ;C) =
∑

W∈X̃(pIs)

e(p−1W̄Q1 + p−1WT1)
∑

X (pMats,n−s(Z))

e(2p−1XT t
2)e(C

−1
1 Y W̄XT3) · SU

=

n∏
i=s+1

p(n−i+1)µi

∑
W∈X̃(pIs)

e(p−1W̄Q1 + p−1WT1)

·
∑

U1∈X̃1(C1)

T3=Ū1Q3Ū
t
1 ([C̃1])

e(C−1
1 Ū1Q3 + C−1

1 U1T3)

·
∑

X (pMats,n−s(Z))

e(2p−1XT t
2 +XT3Y W̄ )e(−2C−1

1 Ū1Q
t
2W̄Y t)

·
∑

U2,1∈X̃2,1(C1)

e(C−1
1 C̃1U2,1(T3 − Ū1Q3Ū

t
1) + Ū t

1C
−1
1 (C̃U2,1Ū1)

2Q3).

We used that e(−C−1
1 ŪY W̄Q2) = e(−C−1

1 ŪQt
2W̄Y t). Replacing Y by p−1C1X

t in every occur-
rence, we proved the following.

Proposition 4.2. Let p be an odd prime. Let C = diag(pσ1 , . . . , pσn) with σ1 = · · · = σs = 1 and
2 ≤ σs+1 ≤ · · · ≤ σn. Following the notation introduced in this section and the one before, we have:

K(Q,T ;C) =

n∏
i=s+1

p(n−i+1)µi

∑
W∈X(pIs)

e(p−1W̄Q1 + p−1WT1)

·
∑

U1∈X̃1(C1)

T3=Ū1Q3Ū
t
1 ([C̃1])

e(C−1
1 Ū1Q3 + C−1

1 U1T3)

·
∑

X (pMats,n−s(Z))

e(2p−1X(T t
2 − Ū1Q

t
2W̄ ) + p−1XT3X

tW̄ )

·
∑

U2,1∈X̃2,1(C1)

e(C−1
1 C̃1U2,1(T3 − Ū1Q3Ū

t
1) + Ū t

1C
−1
1 (C̃1U2,1Ū1)

2Q3).

Remark. If s = 0, we make the convention that the sums over W and U1 are equal to 1. Then the
above result generalizes Proposition 3.4.

We close this section by considering the degenerate case where all coefficients are divisible by p.
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Proposition 4.3. Let Q and T be half-integral symmetric matrices such that (Q,T, p) ̸= 1. Let
C = diag(pIs, C3) with prime powers in C3 larger than p (potentially s = 0). Then

Kn(Q,T ;C) = |X(pIs)| · p(n−s)(n+s+1)/2 ·Kn−s(p
−1Q3, p

−1T3; p
−1C3)

= |X(pIs)| · p(n−s)(n+s+1)/2 ·Kn(p
−1Q, p−1T ; p−1C)

(with |X(pI0)| = 1.)
More generally, let σi,k = min{σi, k} and C(k) = diag(pσ1,k , . . . , pσn,k). Consider the largest k

such that C−1
(k)Q and C−1

(k)T are integral. Let s be the largest index such that σs ≤ k. Then

|Kn(Q,T ;C)| ≪
n∏

i=1

p(n−i+1)σi,k ·
∣∣Kn−s(p

−kQ3, p
−kT3; p

−kC3)
∣∣

where Q3, T3, C3 are the bottom-right blocks of size n − s by n − s of resp. Q,T,C. If s = n, we
interpret K0 as 1.

Proof. By Equation (4.2), following the notation there and using that Y = p−1C1X
t, we have

Kn(Q,T ;C) =
∑

W,X,U

e(p−1[W̄Q1 +WT1 + 2XT t
2 ])

· e(C−1
1 [−2ŪY W̄Q2 + ŪQ3 + UT3 + Y W̄XT3])

=
∑

W,X,U

e((pC−1
1 )Ū(p−1Q3) + (pC−1

1 )U(p−1T3))

= |X(pIs)| · ps(n−s) ·
∑

U∈X̃(C1)

e((pC−1
1 )Ū(p−1Q3) + (pC−1

1 )U(p−1T3)).

Note that X̃(p−1C1) is a set of representatives for the matrices in X̃(C1) modulo (p−1C1)Matn−s(Z).
We write U = U1 + p−1C1U2 with U1 ∈ X̃(p−1C1) and

U2 ∈ X̃2(C1) = {U (mod pMatn−s(Z)) | (C1, U) symmetric pair}.
Similarly to Lemma 3.3, we have Ū = Ū1(In−s−p−1C1U2Ū1) (mod C1 Matn(Z)). Then the remain-
ing sum over U is ∑

U1∈X̃(p−1C1)

∑
U2∈X̃2(C)

e((pC−1
1 )Ū1(p

−1Q3) + (pC−1
1 )U1(p

−1T3))

= p(n−s)(n−s+1)/2 ·Kn−s(p
−1Q3, p

−1T3; p
−1C).

This proves the first part of the first equation. The second part follows by Proposition 2.11. Note
that the above computation is also valid if s = 0. In that case, the sums over W and X are empty
and we get

Kn(Q,T ;C) = pn(n+1)/2Kn(p
−1Q, p−1T ; p−1C).

Let k be the largest integer such that C−1
k Q and C−1

k T are integral and let s be the largest index
such that σs ≤ k (s = 0 if σ1 > k). If s = 0, by induction on the above, we have

Kn(Q,T ;C) = pn(n+1)k/2Kn(p
−kQ, p−kT ; p−kC).

Therefore the second result of the proposition is true in that case, since σi,k = k for all i. Suppose
that s ≥ 1. Let s1 be the largest index such that σs1 = σ1. Applying the above equation with
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k = σ1 − 1 and the first result, we get

Kn(Q,T ;C) = pn(n+1)(σ1−1)/2 |X(pIs1)| p(n−s1)(n+s1+1)/2Kn−s(p
−σ1Q′

3, p
−σ1T ′

3; p
−σ1C ′

3)

≪ pn(n+1)σ1/2Kn−s1(p
−σ1Q′

3, p
−σ1T ′

3, p
−σ1C ′

3),

with Q′
3, T

′
3, C

′
3 the n−s1 by n−s1 bottom-right block of resp. Q,T,C. By induction on n, we have

Kn(Q,T ;C) ≪ pn(n+1)σ1/2
n∏

i=s1+1

p(n−i+1)(σi,k−σ1) ·
∣∣Kn−s(p

−kQ3, p
−kT3, p

−kC3)
∣∣ ,

=

n∏
i=1

p(n−i+1)σi,k ·
∣∣Kn−s(p

−kQ3, p
−kT3, p

−kC3)
∣∣ ,

since σ1 = σi,k for i ≤ s1. □

5. Matrix Gauss sums and a counting problem

In this section, we finalize the proof of Theorem 1.1 by giving non-trivial bounds for exponential
sums and a counting problem appearing in the last two sections. More precisely, we will consider
the following elements of Proposition 4.2:

(1) The sum overW is bounded trivially, except in some cases. More details are given in Remark
(2) after Proposition 5.4.

(2) The sum over U1 contains a quadratic equation. We bound the number of solutions in
Proposition 5.7.

(3) The sum over X is a Gauss sum over matrices. We bound it in Proposition 5.4.
(4) The sum over U2,1 is a Gauss sum over coprime symmetric pairs. We bound it in Proposition

5.5.

Before that, we state two lemmas about cancellations of full matrix sums. We also consider multiple
simple matrix equations in Lemma 5.3.

From now, we suppose that p ̸= 2 is odd. In particular, half-integral matrices can be seen as
integral matrices since 2 is invertible modulo p. We state Propositions 5.4, 5.5 and 5.7 in a way
that is true for all p, but only prove them for p ̸= 2. We consider the case p = 2 at the end of the
section.

Lemma 5.1. Let m,n be two positive integers. Let C = diag(pσ1 , . . . , pσm) and let A be a n by m
integral matrix. We have ∑

X (C Matm,n(Z))

e(C−1XA) = δA=0 (Matn,m(Z)C) det(C)n.

Proof. Let X = (xij) and A = (aij). We have

tr(C−1XA) =

m∑
i=1

n∑
j=1

p−σixijaji.

For fixed i and j, the sum over xij is a complete character sum. It is 0 unless

0 = p−σiaji = (AC−1)ji (mod 1)

In conclusion, the full sum is 0 unless AC−1 is integral. In the latter case, all the summands are 1
and the sum is equal to the size of the sum set. □
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Lemma 5.2. Let p be an odd prime. Let C = diag(pσ1 , . . . , pσn) with 0 ≤ σ1 ≤ · · · ≤ σn and let
A ∈ Matn(Z). We have ∑

D (C Matn(Z))
(C,D) sym. pair

e(C−1DA) = δA+At=0 ([C])

n∏
i=1

p(n−i+1)σi .

Proof. Let X = (xij) and A = (aij). We have

tr(C−1XA) =

n∑
i,j=1
i<j

p−σixij(aji + aij) +

n∑
i=1

p−σixiiaii.

For fixed i ≤ j, the sum over xij is a complet character sum. For i < j, it is zero unless 0 =
p−σi(aij + aji) (mod 1) for all 1 ≤ i ≤ j ≤ n. For i = j, it is zero unless 0 = p−σiaii (mod 1).
Since p ̸= 2 and C has increasing prime powers on the diagonal, this is equivalent to 0 = aij + aji
(mod pmin{σi,σj}) for all 1 ≤ i, j ≤ n. That equation is the same as

0 = A+At (mod [C]).

In conclusion, the full sum is 0 unless the equation above is true. In the latter case, all the summands
are 1 and the sum is equal to the size of the sum set. □

The following lemma is about various matrix equations. We prove non-trivial bounds for the
number of solutions, but do not try to get the best possible result. Since p is odd, it is equivalent to
consider half-integral or integral matrices. We state the lemma for the former, since these matrices
will appear in the applications.

Lemma 5.3. Let m,n, k be positive integers and let p be a prime number.

(1) Let T ∈ Matm,n(Z) and Q ∈ Matn(R) be a half-integral matrices with (p,Q) = 1. The
number of matrices U (mod pk Matm,n(Z)) satisfying the equation

T = UQ (mod pk Matm,n(Z))

is O(pkm(n−1)).
(2) Let T ∈ Matn,m(Z) and Q ∈ Matn,m(Z) be a matrix with (Q, p) = 1. The number of

symmetric matrices U (mod pk Matn(Z)) satisfying the equation

T = UQ (mod pk Matn(Z))
is O(pkn(n−1)/2).

(3) Let T ∈ Matn(R) be a half-integral symmetric matrix and D = diag(d1, . . . , dm) be a
diagonal matrix with p ∤ di, i = 1, . . . ,m. Suppose that m ≥ 3 or that m = 1, 2 and
(p, T ) = 1. Then the number of matrices U (mod pk Matn,m(Z)) satisfying the equation

T = UDU t (mod pk Matn(Z))
is O(pk(m−1)n). Remark: a more precise result was proven by Carlitz [Car] for finite fields.

(4) Let T ∈ Matn(R) be a half-integral symmetric matrix and D = diag(d1, . . . , dn) be a diago-
nal matrix with p ∤ di, i = 1, . . . , n. Suppose that n ≥ 4 or that (p, T ) = 1. The number of
symmetric matrices U (mod pkXn(Z)) satisfying the equation

T = UDU (mod pk Matn(Z))
is O(pkn(n−1)/2).
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(5) Suppose that p is odd. Let T ∈ Matn(R) be a half-integral symmetric matrix and Q ∈
Matn,m(Z) with (p,Q) = 1. The number of matrices U (mod pk Matn,m(Z)) satisfying the
equation

T = QU t + UQt (mod pk Matn(Z))
is O(pkm(n−1)). Remark: a variant of this equation with symmetric U is considered in Case
1 of the proof of Proposition 5.5.

Proof. We start with a preliminary claim. Let vp(x) be the minimum between the p-adic valuation
of x and k. Note that the number of x (mod pk) with valuation at least v ∈ R≥0 is O(pk−v).

Claim: the number of solutions of the equation x2 = a (mod pk) is bounded by O(pvp(a)/2).
Proof of Claim: note that if a = 0 (mod pk), then the solutions of the equation are the x with
vp(x) ≥ k/2. Suppose that a ̸= 0 (mod pk). Write a = prb and x = psy with r = vp(a) and
s = vp(x). Clearly, we must have r = 2s. Then b = y2 (mod pk−2s). The number of solution of this
equation with p ∤ b is bounded (it is at most 4 for p = 2 and at most 2 otherwise). Let y0 be such
a solution (if it exists). Then x = ps(y0 + pk−2sy1) for some y1. The different values possible for y1
are 0, . . . , ps − 1.

Now, we prove the statements (1)–(5).

(1) Since (p,Q) = 1, there is 1 ≤ k0, j0 ≤ n with p ∤ qk0j0 . Let 1 ≤ i ≤ m. We have

tij0 =

n∑
k=1

uikqkj0 (mod pk).

Fix uik (mod pk) for 1 ≤ i ≤ m and k ̸= k0. Then uik0 is given by the equation above since
qk0,j0 is invertible. In total, we have at most O(pkm(n−1)) solutions.

(2) Since (p,Q) = 1, there is 1 ≤ k0 ≤ n, 1 ≤ j0 ≤ m with p ∤ qk0j0 . By multiplying on the
right by a permutation matrix, we can suppose without loss of generality that j0 = m. Let
1 ≤ i ≤ n. We have

tim =

n∑
k=1

uikqkm (mod pk).

Recall that U is symmetric so uik = uki. Fix uik (mod pk) for i, k ̸= k0. Then uik0
(mod pk)

is fixed by the above equation for i ̸= k0. Once all the values except uk0k0
are fixed, the

last coordinate is fixed by considering the above equation with i = k0. In total, we have at
most O(pkn(n−1)/2) solutions.

(3) Case m = 1: suppose that (p, T ) = 1. Let 1 ≤ i, j ≤ n. Then

tij = d1ui1uj1 (mod pk).

There is i0, j0 such that p ∤ ti0j0 . Then p ∤ ui01, uj01. We deduce that p ∤ ti0i0 = d1u
2
i01

. By

the claim, there are O(1) for ui01. Then for all j ̸= i0, we can fix uj1 = d̄1ūi01ti0j (mod pk).
So there are finitely many solutions in that case.
Case m = 2: first, we give a bound for a general T . Let 1 ≤ i ≤ n. We have

tii = d1u
2
i1 + d2u

2
i2 (mod pk).(5.1)

For a fixed ui1, we have O(pv/2) solutions for ui2 with v = vp(tii − d1u
2
i1) by the claim. We

get the additional equation

tii = d1u
2
i1 (mod pv)(5.2)
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The number of solutions for ui1 (mod pv) is bounded by O(pv/2) and the number of ways
to lift a solution modulo pk is O(pk−v). Therefore, the number of solutions for the pair
(ui1, ui2) is

O

(
k∑

v=0

pk−v+v/2+v/2

)
= O(kpk).

Now suppose that (p, T ) = 1. There is i0, j0 such that p ∤ ti0j0 . Suppose that i0 = j0.
Consider Equation (5.1) for i = i0 and the computation below it. In Equation (5.2), the
number of ui01 (mod pv) is O(1). Thus we get

O

(
k∑

v=0

pk−v+v/2

)
= O(pk)

solutions for the pair (ui01, ui02) in that case. Suppose that p ∤ ui01. Then consider j ̸= i0
and

ti0j = d1ui01uj1 + d2ui02uj2 (mod pk).(5.3)

Once uj2 is fixed, so is uj1 since ui01 is invertible. If p | ui01, then p ∤ ui02 and the proof
goes the same way with ui02 instead of ui01. We get O(pnk) solutions for U in that case.

Suppose that p | tii for all i. Let i0 ̸= j0 with p ∤ ti0j0 . Consider the equation

ti0j0 = d1ui01uj01 + d2ui02uj02 (mod pk).

Suppose that p ∤ ui01, uj01. Otherwise the same proof works with p ∤ ui02, uj02. Fix these
two coordinates arbitrarily. There are O(p2k) possible choices. Consider

ti0i0 = d1u
2
i01 + d2u

2
i02 (mod pk).

Then there are O(1) choices for ui02 by the claim since p | ti0i0 . Fix uj02 in the same way.
Then consider j ̸= i0, j0 and solve Equation (5.3) as in the case i0 = j0. In total, we get
O(pkn) solutions for U in both cases.
Case m = 3: let 1 ≤ i ≤ n. Consider

tii = d1u
2
i1 + d2u

2
i2 + d3u

2
i3 (mod pk).

For fixed ui1, ui2, we have O(pv/2) solutions for ui3 with v = vp(tii − d1u
2
i1 − d2u

t
i2) by the

claim. We get the additional equation

tii = d1u
2
i1 + d2u

2
i2 (mod pv)

This has O((v+1)pv) solutions by the case m = 2. The number of ways to lift them modulo
pk is O(p2(k−v)). In total, the number of solutions for (ui1, ui2, ui3) is bounded by

≪
k∑

v=0

(v + 1)p2(k−v)+v+v/2 ≪
k∑

v=0

(v + 1)p2k−v/2 ≪ p2k.

We conclude by summing over i. The number of solutions for U is O(p2kn).
Case m ≥ 4: for 1 ≤ i ≤ n, we have

tii =

m∑
j=1

dju
2
ij (mod pk).
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By induction on m, suppose that the above equation has O(pk
′(m′−1)) solutions for m′ =

m − 1 and all k′ ∈ N. We proved this above for m′ = 3. Let r = tii −
∑m−1

j=1 dju
2
ij . The

number of solutions for uin is bounded by pv/2 with v = vp(r). Moreover the equation r = 0

(mod pv) has O(pv(m−2)) solutions for (ui1, . . . , ui,m−1) by induction. These can be lift

modulo pk in at most p(k−v)(m−1) ways. In total, the number of solutions for (ui1, . . . , uim)
is bounded by

≪
k∑

v=0

pk(m−1)−v+v/2 ≪ pk(m−1).

We conclude by summing over i.

Remark. In particular, we showed that the equation

t =

m∑
j=1

djx
2
j (mod pk)

has O(pk(m−1)) solutions for m ≥ 3 and the same is true for m = 1, 2 if p ∤ t.

(4) Case n = 1: the equation is the same as in (1).
Case n = 2: suppose that (p, T ) = 1. we have the equations

t11 = d1u
2
11 + d2u

2
12 (mod pk),

t12 = u12(d1u11 + d2u22) (mod pk),

t22 = d1u
2
12 + d2u

2
22 (mod pk).

Suppose that p ∤ t11, t22. Then there are O(pk) way to solve the first equation by (1). If
p ∤ u12, then u22 is fixed by the second equation. If p | u12, then there are O(1) solutions
for u22 in the last equation by the claim.

Suppose that p | t11, t22 and p ∤ t12. Then p ∤ u12 by the second equation. Once u12

is fixed, there are O(1) choices for u11 and u22 by the claim using the first resp. the last
equation.

Suppose that p ∤ t11 and that p | t22. Combining the first and the last equation, we get

d1t11 − d2t22 = d1d2(u
2
11 − u2

22) (mod pk).

By (1), Case m = 2, we have O(pk) solutions for the pair (u11, u22). Then if p | u22, we
have p ∤ u11 and u12 is fixed by the second equation. If p ∤ u22, then u12 is fixed by the last
equation using the claim. If p | t11 and p ∤ t22, the same proof works if we exchange the
roles of u11 and u22. In any case, we got O(pk) solutions for U .
Case n = 3: let P be a permutation matrix. Consider the equivalent equation

PTP t = V P−tDP−1V (mod pk)

with V = PUP t. We can make the change of variable U 7→ V and choose P such that
p ∤ (PTP t)i0j0 for fixed i0, j0 with i0, j0 ≥ 2. Without loss of generality, we suppose that
this holds for T . Consider the equation

t11 = d1u
2
11 + d2u

2
12 + d3u

2
13 (mod pk).

We have O(p2k) solutions for t11 as seen in (1). Consider the bottom-right block of size 2
by 2 of the equation. We have 3 equations for u22, u23 and u33. This corresponds to the case
n = 2 with T replaced by some combination of T and u12, u13. If p | u12, u13, then we get
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back the case n = 2 and have O(pk) solutions for (u22, u23, u33). Otherwise, consider the
equations

t12 = d1u11u12 + d2u12u22 + d3u13u23 (mod pk),

t13 = d1u11u13 + d2u12u23 + d3u13u33 (mod pk).

If p ∤ u12, fix u33. Then u23 is fixed by the second equation. Once u23 is fixed, u22 is fixed
by the first equation. If p ∤ u13, fix u22. Then u23 is fixed by the first equation. Once u23 is
fixed, u33 is fixed by the second equation. In any case, we get O(p4k) solutions for U .
Case n = 4: let v1 = vp((u13, u14)) and i0 such that v(u1i0) = v1. Consider the equation

t11 −
∑
i̸=i0

diu
2
1i = di0u

2
1i0 (mod pk).

The right-hand side has valuation 2v1 and so has the left-hand side. Therefore, the number
of solutions for u2

1i0
once the rest is fixed is O(pv1) by the claim. For i0 ̸= i = 3, 4, we fix

u1i. Since vp(u1i) ≥ v1, we have O(pk−v1) possibilities. We do something similar for the
second row. Let v2 = vp((u23, u33)) and i0 the coordinate such that vp(u2i0) = v2. Then
the number of solutions for u2i0 once the rest is fixed is O(pv2). For i0 ̸= i = 3, 4, we have
O(pk−v2) possibilities to fix u2i. In total, we have O(p2k) solutions for (u13, u14, u23, u24)
once u11, u12, u22 are fixed.

We are left with the equations

t11 = d1u
2
11 + d2u

2
12 (mod p2v1),

t22 = d1u
2
12 + d2u

2
22 (mod p2v2).

If v1 < v2, we consider the first equation. By (1), Case m = 2, we have O((v1 + 1)p2v1)
solutions for the pair (u11, u12). We have O(p2(k−2v1)) ways to lift them modulo pk. Then
in the second equation, we have O(pv2) solutions for u22 by the claim and we can lift them
in O(pk−2v2) ways modulo pk. In total, we get O((v1+1)p3k−2v1−v2) solutions in that case.

If v1 ≥ v2, we exchange the roles of v1 and v2. That is we consider the second equation.
By (1), Case m = 2, we have O((v2 +1)p2k−2v2) solutions for the pair (u12, u22) (mod pk).
Then in the first equation, we have O(pk−v1) solutions for u11 (mod pk) by the claim. In
total, we get O((v2 + 1)p3k−2v2−v1) solutions in that case.

Finally, let v = min{v1, v2}. We write T = (Tij), U = (Uij), D = diag(D1, D2) in blocks
of size 2 by 2. We have

T22 − U11D1U12 = U12D2U22 (mod pk Mat2(Z)).
We fixed U11 and U12. Both sides are divisible by pv and (p, p−vU12) = 1. By Lemma 5.3
(2), we get O(pk−v) solutions for U22 (mod pk−v Mat2(Z)). We have O(p3v) ways to lift the
solutions modulo pk Mat2(Z). In total, the number of solutions for U is bounded by

≪
k∑

v1=0

(
v1∑

v2=0

(v2 + 1)p2kp3k−2v2−v1pk+2v2 +

k∑
v2=v1+1

(v1 + 1)p2kp3k−2v1−v2pk+2v1

)

≪
k∑

v1=0

p6k((v1 + 1)2p−v1 + (v1 + 1)p−v1)

≪ p6k.
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Case n ≥ 5: for 1 ≤ i ≤ n− 4, we have

tii −
i−1∑
j=1

diu
2
ji =

n∑
j=i

diu
2
ij (mod pk).

Consider i in increasing order. By (1), we have O(pk(n−i)) solutions for (uii, . . . , uin) if
i ≤ n− 4. Finally, once uij is fixed for 1 ≤ i ≤ j ≤ n− 4, we get a 4 by 4 symmetric matrix
equation that corresponds to the case n = 4. In total, we get

O

(
n−4∑
i=1

pk(n−i) · p6k
)

= O(pkn(n−1)/2)

solutions for U .
(5) Since (p,Q) = 1, there is 1 ≤ j0 ≤ n, 1 ≤ k0 ≤ m with p ∤ qj0k0 . For 1 ≤ i ≤ n, we have

tij0 =

n∑
k=1

(qikuj0k + qj0kuik) (mod pk).

Fix uik for all i and k ̸= k0. Consider the above equation for i = j0. We get

2qj0k0uj0k0 = tj0j0 − 2
∑
k ̸=k0

qj0kuj0k (mod pk).

Since p ̸= 2, this fixes uj0k0
. Now consider the above equation for i ̸= j0. We get

qj0k0uik0 = tij0 − qik0uj0k0 −
∑
k ̸=k0

(qikuj0k + qj0kuik) (mod pk).

Everything on the right is fixed so this fixes uik0
for i ̸= j0. In total, we have at most

O(pk(m−1)n) solutions.

□

Proposition 5.4. Let p be an odd prime. Let A ∈ Matn−s,s(R) with half-integral coefficients,
B1 ∈ Xn−s(R) a half-integral symmetric matrix and B2 ∈ Xs(Z) with p ∤ det(B2). Consider the sum

G(A,B1, B2; p) :=
∑

X (pMats,n−s(Z))

e(2p−1XA+ p−1XB1X
tB2).

If (p, 2B1) = 1, then

|G(A,B1, B2; p)| ≪ ps(n−s−1/2).

Also if (p, 2B1) ̸= 1, then

|G(A,B1, B2; p)| ≪ δ2A=0 (pMatn−s,s(Z))p
s(n−s).

Finally if p ∤ det(B1), then

|G(A,B1, B2; p)| ≤ ps(n−s)/2.

Remark.

(1) A precise computation of a similar Gauss sum was done by Walling in [Wal].
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(2) In Proposition 4.2, the sum over X (mod pMats,n−s(Z)) is G(T t
2 − Ū1Q

t
2W̄ , T3, W̄ ). In

particular, when we are in the case where 2A = 0 (mod pMatn−s,s), we have

2T2U1 = 2W̄Q2 (mod pMats,n−s(Z)).

By Lemma 5.3 (2), we get O(ps(s−1)/2) possibilities for W̄ if (p, 2Q2) = 1. Since summing
over W is equivalent to summing over W̄ , this means that the combined sum over W and
X is bounded by

≪ min{ps(s+1)/2 · ps(n−s−1/2)(p, 2T3)
s/2, ps(s−1)/2(p, 2Q2)

s · ps(n−s)}

≪ ps(n−s/2)(p, 2Q2, 2T3)
s/2.

Finally, by the remark after Proposition 5.7, we can replace T3 by Q3. We will use this
bound at the end of this section when proving Theorem 1.1.

Proof. We compute the square of the absolute value of the sum:

|G(A,B1,B2; p)|2 =
∑

X1,X2 (pMats,n−s(Z))

e(2p−1(X1 −X2)A+ p−1X1B1X
t
1B2 − p−1X2B1X

t
2B2)

=
∑

X1,X2 (p)

e(2p−1(X1 −X2)A+ p−1(X1 +X2)B1(X
t
1 −Xt

2)B2

+ p−1X1B1X
t
2B2 − p−1X2B1X

t
1B2).

We replace X2 by X = X1 −X2.

=
∑

X1,X (p)

e(2p−1XA+ p−1(2X1 −X)B1X
tB2 − p−1X1B1X

tB2 + p−1XB1X
t
1B2).

The sum over X1 is now linear.

=
∑
X (p)

e(2p−1XA− p−1XB1X
tB2)

∑
X1 (p)

e(p−1X1B1X
tB2 + p−1XB1X

t
1B2).

Recall that B1 and B2 are symmetric. We rearrange the sum over X1 and apply Lemma 5.1:∑
X1 (p)

e(p−1X1B1X
tB2 + p−1XB1X

t
1B2) =

∑
X1 (p)

e(2p−1X1B1X
tB2)

= δ2B1XtB2=0 (pMatn−s,s(Z))p
s(n−s).

Since p ∤ det(B2), we have

2B1X
tB2 = 0 (mod pMatn−s,s(Z)) ⇔ 2B1X

t = 0 (mod pMatn−s,s(Z)).
If p ∤ det(B1), clearly the only solution is X = 0 (mod pMats,n−s(Z)). If (p,B1) = 1, by Lemma

5.3 (1), there are O(ps(n−s−1)) possible values of X (mod p). Then we have

|G(A,B1, B2; p)|2 = p(n−s)s
∑

X (pMats,n−s(Z))

e(2p−1XA− p−1XB1X
tB2)δX∈pMats,n−s(Z)

≪ ps(n−s) · ps(n−s−1)

= p2s(n−s−1/2).
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Finally if (p,B1) ̸= 1, then the original sum is

G(A, 0, B2; p) =
∑

X (pMats,n−s(Z))

e(2p−1XA) = ps(n−s)δA=0 (pMatn−s,s).

□

Proposition 5.5. Let p be an odd prime. Let A,B ∈ Matn(R) be half-integral symmetric matrix
and W ∈ Matn(Z) with (C,W ) a coprime symmetric pair. We consider the sum

H(A,B,W ;CC̃−2) :=
∑

U (CC̃−2 Matn(Z))
(CC̃−1,U) sym. pair

e(C−1C̃2UA+ C−1C̃UWC̃UWBW t)

(1) If C = pkIn is scalar, k ≥ 2, and k is odd, then∣∣∣H(A,B,W ;CC̃−2)
∣∣∣≪ pn

2/2(p, 2B)n/2.

If k is even, the sum is 1 (there is only one matrix U in the sum).
(2) In general, we have∣∣∣H(A,B,W ;CC̃−2)

∣∣∣≪ n∏
i=1

p(n−i+1/2)(σi−2µi)(p, 2B′
i)

(σi−2µi)/2.

Here B′
i is the bottom-right block of B of size s by s, where s is the smallest integer with

σs = σi.

Remark. In Proposition 4.2, the sum over U2,1 ∈ X̃2,1(C1) is H(T3 − Ū1Q3Ū
t
1, Q3, Ū1;C1C̃

−2
1 ).

Proof. We compute the square of the absolute value of the sum:

|H(A,B,W ;CC̃−2)|2

=
∑
U1,U2

e(C−1C̃2(U1 − U2)A+ C−1C̃U1WC̃U1WBW t − C−1C̃U2WC̃U2WBW t)

=
∑
U1,U2

e(C−1C̃2(U1 − U2)A+ C−1C̃(U1 + U2)WC̃(U1 − U2)WBW t

+ C−1C̃U1WC̃U2WBW t − C−1C̃U2WC̃U1WBW t).

We replace U2 by U = U1 − U2.

=
∑
U1,U

e(C−1C̃2UA+ C−1C̃(U1 − U)WC̃UWBW t + C−1C̃UWC̃U1WBW t).

The sum over U1 is now linear.

=
∑
U

e(C−1C̃2UA− C−1C̃UWC̃UWBW t)

·
∑
U1

e(C−1C̃U1WC̃UWBW t + C−1C̃UWC̃U1WBW t).

Since B is symmetric and (CC̃−1, U), (CC̃−1, U1) and (C,W ) are symmetric pairs, the inner sum
is equal to∑

U1

e(WBW tU tC̃W tU t
1C̃C−1 + C−1C̃UWC̃U1WBW t) =

∑
U1

e(2U tC−1C̃WC̃U1WBW t).
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Let V = C̃−1WC̃U1W . Then (CC̃−1, V ) is a symmetric pair since

C−1C̃V = CWC̃U1W = W tU t
1C̃W tC−1 = V C−1C̃.

Moreover let U1 − U ′
1 ∈ CC̃−2 Matn(Z) and V − V ′ := C̃−1WC̃(U1 − U ′

1)W . By Lemma 3.1, we
have

V − V ′ ∈ (C̃−1WC̃)CC̃−2 Matn(Z) = CC̃−2(C−1C̃WCC̃−1)Matn(Z) = CC̃−2 Matn(Z).
So U1 7→ V is a valid change of variable. We get∑

U1

e(2U tC−1C̃WC̃U1WBW t) =
∑
V

e(2C−1C̃2V BW tU t).

Let R = BW t and M = (mij) = BW tU t. We showed that∣∣∣H(A,B,W ;CC̃−2)
∣∣∣2 =

∑
U

e(C−1C̃2UA− C−1C̃UWC̃UWBW t)
∑
V

e(2C−1C̃2VM).(5.4)

Our goal now is to bound the number of U . The innermost summand gives

tr(2C−1C̃2VM) = 2

n∑
i,j=1
i<j

(p2µi−σimji + p2µj−σjp(σj−µj)−(σi−µi)mij)vij +

n∑
i=1

p2µi−σimiivii

= 2

n∑
i,j=1
i<j

p2µi−σi(mji + pµj−µimij)vij +

n∑
i=1

p2µi−σimiivii.

For fixed i and j, we sum over vij (mod pσi−2µi). This is a complete character sums and it cancels
unless the coefficient in front is 0 (mod pσi−2µi). In the latter case, it is equal to the number of V

(mod CC̃−2 Matn(Z)), which is O(
∏n

i=1 p
(n−i+1)(σi−2µi)). Assuming that p is odd, we get in the

former case
pµj−µimij +mji = 0 (mod pσi−2µi)

for 1 ≤ i ≤ j ≤ n. This is equivalent to0 · · · 0
. . .

...
0

 = C̃−1RU tC̃ + URt (mod CC̃−2 Matn(Z))(5.5)

where we do not consider the equations given by coefficients under the diagonal.

Claim: the number of U satisfying the above equation is

O

(
n∏

i=1

p(n−i)(σi−2µi)(p,R′
i)

σi−2µi

)
.

Moreover (p,R′
i)

σi−2µi = (p,B′
i)

σi−2µi . Here R′
i is the bottom-right block of R of size s by s, where

s is the smallest integer with σs = σi and B′
i is defined similarly.

We split the proof of the claim into three cases, depending on the shape of C.
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Case 1 : C = pkIn. In that case, U is symmetric. If k is even, there is nothing to prove. Suppose k
odd. In that case, Equation (5.5) becomes

(RU t + URt)ij =

n∑
k=1

(rikujk + rjkuik) = 0 (mod p), i ≤ j(5.6)

with ujk = ukj since U is symmetric. Since the equation is symmetric in i and j, it is actually
valid for any coordinate. If (p,R) ̸= 1, the equation is trivial. Otherwise the equation is similar to
Lemma 5.3 (5), but we have to be careful with the additional symmetry.
Case 1.1 : p ∤ rj0k0

for some j0 ̸= k0. Fix ujk (mod p) for all 1 ≤ j ≤ k except for k = k0 or j = k0.
Equation (5.6) for i = j = j0 is

2rj0k0
uj0k0

= −2
∑
k ̸=k0

rj0kuj0k (mod p).

This fixes uj0k0
. Equation (5.6) for i ̸= j = j0 is

rj0k0uik0 = rik0uj0k0 +
∑
k ̸=k0

(rikuj0k + rj0kuik) (mod p).

If i ̸= k0, everything on the right-hand side of the equation is fixed and we get uik0
. Finally,

consider the above equation for i = k0. Now the right-hand side is fixed and we get uk0k0
. We fixed

n coordinates of V from the others, meaning that we have at most

O(pn(n−1)/2)

solutions for U .
Case 1.2 : p | rjk for all j ̸= k. Then Equation (5.6) is

(rii + rjj)uij = 0 (mod p).

This fixes uij for all i ≤ j with p ∤ rii + rjj . Let j0 be such that p ∤ rj0j0 . For all 1 ≤ i ≤ n, we do
the following: if p ∤ rii + rj0j0 , we fix uij0 with the above equation. If p | rii + rj0j0 , then clearly
p ∤ rii. We fix uii with the above equation. We fixed n coordinates of V , meaning that we have at
most

O(pn(n−1)/2)

possible solutions for U .
We got the same bound for Case 1.1 and Case 1.2. Adding the case (p,R) ̸= 1, we get

O(pn(n−1)/2(p,R)n) = O

(
n∏

i=1

pn−i(p,R)

)
.

solution for U . Note that R = BW t and p ∤ det(W ). So (p,R) = (p,B).

Case 2 : C not scalar. We prove the claim by induction on n.
Case 2.1 : σ1 is even. Let σ = σ1 and µ = µ1. We write C = diag(pσIr, C1) with all the prime

powers in C1 larger than pσ. Then C̃ = diag(pµIr, C̃1) and CC̃−1 = diag(pσ−µIr, C1C̃
−1
1 ). Note

that pµ can be a prime power of C̃1. We write

R =

(
R1 R2

R3 R4

)
, U =

(
U1 U2

pµ−σC1C̃
−1
1 U t

2 U4

)
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with R1 and U1 blocks of size r by r. Note that pµ−σC1C̃
−1
1 U t

2 = 0 (mod pMatn−r,r(Z)) and U1 is
symmetric. Equation (5.5) becomes0 · · · 0

. . .
...
0

 = C̃−1RU tC̃ + URt (mod CC̃−2 Matn(Z))

=

(
p−µ

C̃−1
1

)(
R1 R2

R3 R4

)(
U1

U t
2 U t

4

)(
pµ

C̃1

)
+

(
U1 U2

U4

)(
Rt

1 Rt
3

Rt
2 Rt

4

)
=

(
∗ p−µR2U

t
4C̃1 + U1R

t
3 + U2R

t
4

∗ C̃−1
1 R4U

t
4C̃1 + U4R

t
4

) (
mod

(
Ir

C1C̃
−2
1

))
.

Consider the bottom-right block. If C1 is a scalar matrix, we apply Case 1. Otherwise, we suppose
by induction on n that there are

O

(
n∏

i=r+1

p(n−i)(σi−2µi)(p,R′
i)

σi−2µi

)
solutions for U4. Since σ1 = 2µ1, we conclude the proof of the claim in that case.
Case 2.2 : σ1 is odd and C = diag(pσ1Ir, p

σ1+1Is). Let σ = σ1 and µ = µ1. Then we have C̃ =

diag(pµIr, p
µ+1Is) and CC̃−1 = pµIr+s. In particular, U is symmetric. Equation (5.5) becomes0 · · · 0

. . .
...
0

 = C̃−1RU tC̃ + URt

(
mod

(
pIr

0s

)
Matn(Z)

)

=

(
p−µIr

p−µ−1Is

)(
R1 R2

R3 R4

)(
U1 U2

U t
2 U4

)(
pµIr

pµ+1Is

)
+

(
U1 U2

U t
2 U4

)(
Rt

1 Rt
3

Rt
2 Rt

4

)
=

(
R1U1 + U1R

t
1 +R2U

t
2 + U2R

t
2 U1R

t
3 + U2R

t
4

∗ ∗

)
.

Suppose that (p,R) = 1. Then we do one of the following:

(1) If (p,R1) = 1, we fix U2 and apply Case 1 to get U1.
(2) If (p,R2) = 1, we fix U1 and apply Lemma 5.3 (5) to get U2.
(3) If (p,R3) = 1, we fix U2 and apply Lemma 5.3 (2) to get U1.
(4) If (p,R4) = 1, we fix U1 and apply Lemma 5.3 (1) to get U2.

In all cases, there are no condition on U3 and we won pr over the trivial bound. Therefore we get

O
(
pr(r+2s−1)/2(p,R)r

)
= O

(
n∏

i=1

p(n−i)(σi−2µi)(p,R′
i)

σi−2µi

)
solutions for U . Note that R = BW t and p ∤ det(W ). So (p,R) = (p,B).
Case 2.3 : σ1 is odd and σn ≥ σ1 +2. Let σ = σ1 and µ = µ1. We write C = diag(pσIr, p

σ+1Is, C1).
with all the prime powers in C1 larger than pσ+1 and the convention that s = 0 if there is no
prime power in C equal to pσ+1. By hypothesis, C1 is non-empty. Then C̃ = diag(C̃0, C̃1) =
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diag(pµIr, p
µ+1Is, C̃1) and CC̃−1 = diag(pσ−µIr+s, C1C̃

−1
1 ). Note that the prime powers in C̃0 and

C̃1 can be the same. We write

R =

(
R1 R2

R3 R4

)
, U =

(
U1 U2

pµ−σC1C̃
−1
1 U t

2 U4

)
with R1 and U1 blocks of size r+s by r+s. Note that pµ−σC1C̃

−1
1 U t

2 = 0 (mod pMatn−r−s,r+s(Z))
and U1 is symmetric. Equation (5.5) becomes0 · · · 0

. . .
...
0

 = C̃−1RU tC̃ + URt (mod CC̃−2 Matn(Z))

=

(
C̃−1

0

C̃−1
1

)(
R1 R2

R3 R4

)(
U1

U t
2 U t

4

)(
C̃0

C̃1

)
+

(
U1 U2

U4

)(
Rt

1 Rt
3

Rt
2 Rt

4

)
=

(
C̃−1

0 (R1U1 +R2U
t
2)C̃0 + U1R

t
1 + U2R

t
2 C̃−1

0 R2U
t
4C̃1 + U1R

t
3 + U2R

t
4

∗ C̃−1
1 R4U

t
4C̃1 + U4R

t
4

)
(5.7) (

mod

(
pσ−µC̃−1

0

C1C̃
−2
1

))
.

Consider the bottom-right block. If C1C̃
−1
1 is a scalar matrix, we apply Case 1. Otherwise, we

suppose, by induction on n, that there are

O

(
n∏

i=r+s+1

p(n−i)(σi−2µi)(p,R′
i)

σi−2µi

)
solutions for U4.

Consider the top blocks. We get the equations0 · · · 0
. . .

...
0

 = C̃−1
0 (R1U1 +R2U

t
2)C̃0 + U1R

t
1 + U2R

t
2

(
mod

(
pIr

0s

)
Matr+s(Z)

)
,

0 = C̃−1
0 R2U

t
4C̃1 + U1R

t
3 + U2R

t
4

(
mod

(
pIr

0s

)
Matr+s,n−r−s(Z)

)
.

Suppose that (p,R) = 1. Then we do one of the following:

(1) If (p,R1) = 1, consider the first equation. We fix U2 and apply Case 1 or Case 2.1 to get
U1 depending if s = 0 or not. The proof is valid even if the left-hand side of the equation
is non-zero.

(2) If (p,R2) = 1, consider the first equation. We fix U1. We have

−C̃−1
0 R1U1C̃0 − U1R

t
1 = C̃−1

0 R2U
t
2C̃0 + U2R

t
2

=

(
p−µIr

p−µ−1Is

)(
R21

R22

)(
U t
21 U t

22

)(pµIr
pµ+1Is

)
+

(
U21

U22

)(
Rt

21 Rt
22

)
=

(
R21U

t
21 + U21R

t
21 U21R

t
22

∗ ∗

)
(mod

(
pIr

Is

)
Matr+s(Z))

with R21 and U21 blocks of size r by n − r − s. Recall that we do not consider equations
below the diagonal. Fix U22. If (p,R22) = 1, we apply Lemma 5.3 (1) to the top-right block
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to get U21. Otherwise (p,R21) = 1. We apply Lemma 5.3 (5) to the top-left block to get
U21. Note that this equation is symmetric, so we can drop the restriction of the equation
to the upper-diagonal.

(3) If (p,R3) = 1, consider the second equation. We fix U2. We have

−C̃−1
0 R2U

t
4C̃1 − U2R

t
4 = U1R

t
3 =

(
U11 U12

U t
12 U13

)(
Rt

31

Rt
32

)
=

(
U11R

t
31 + U12R

t
32

∗

) (
mod

(
pIr

Is

)
Matr+s,n−r−s(Z)

)
with U11 a block of size r by r and R31 a block of size n− r − s by r. If (p,R31) = 1, then
we fix U12 and apply Lemma 5.3 (2) to the top block to get U11. Otherwise, (p,R32) = 1.
Then we fix U11 and apply Lemma 5.3 (1) to the top block to get U12. There is no condition
on U13.

(4) If (p,R4) = 1, consider the second equation. We fix U1. We have

−C̃−1
0 R2U

t
4C̃1 − U1R

t
3 = U2R

t
4 =

(
U21R

t
4

U22R
t
4

) (
mod

(
pIr

0s

)
Matr+s,n−r−s(Z)

)
with U21 a block of size r by n − r − s. We apply Lemma 5.3 (1) to fix U21. There is no
condition on U22.

In any case, we won pr over the trivial bound for the pair (U1, U2). In total, we get

O

(
pr(2n−r−1)/2(p,R)r ·

n∏
i=r+s+1

p(n−i)(σi−2µi)(p,R′
i)

σi−2µi

)
= O

(
n∏

i=1

p(n−i)(σi−2µi)(p,R′
i)

σi−2µi

)
solutions for U . As before, R = BW t and p ∤ det(W ). So (p,R′

i)
σi−2µi = (p,B′

i)
σi−2µi for 1 ≤ i ≤

r + s. Recall that (C,W ) is a coprime symmetric pair and note that(
R1 R2

R3 R4

)
= R = BW t =

(
B1 B2

Bt
2 B3

)(
W1

W t
2 W t

3

)
=

(
∗ ∗
∗ B3W

t
3

)
(mod pMatn(Z)).

Since R3 = B3W
t
3 and p ∤ det(W3), we have by induction on n that (p,R′

i) = (p,B′
i). This concludes

the proof of the claim.
Recall Equation (5.4). Taking the bound of the claim for the number of U and a trivial bound

for the number of V , we get∣∣∣H(A,B,W ;CC̃−2)
∣∣∣2 ≪

n∏
i=1

p2(n−i+1/2)(σi−2µi)(p,B′
i)

σi−2µi .

This concludes the proof of the proposition. □

Now, we estimate the number of solutions to the equation T3 = Ū1T3Ū
t
1 appearing the sum over

U1 in Proposition 4.2. We need one additional lemma before that.

Lemma 5.6. Let p be an odd prime and k ≥ 1 an integer. Let Q be an integral symmetric matrix
of size n. Then there are p ∤ x, M ∈ Matn(Z) with p ∤ det(M) and E ∈ Xn−r(Z) such that

MQM t =

Ir−1

x
pE

 (mod pk)

with r being the rank of Q (mod p).



SYMPLECTIC KLOOSTERMAN SUMS FOR Sp(2n) WITH POWERFUL MODULI 33

Remark. We can inductively diagonalize E. In the end, Q is congruent to a diagonal matrix with
prime powers multiplied by invertible elements

Proof. If k = 1, this is true with E = 0. See Theorem VI.10 in [New1]. More precisely, there is M
with p ∤ det(M) such that

MQM t =

Ir−1

x
0n−r

 (mod pMatn(Z)).

For larger prime powers, we use induction. Let D = diag(1, . . . , 1, x) be a matrix of size r. Let k ≥ 1

and suppose that we have M0 such that M0QM t
0 =

(
D

pE

)
(mod pk Matn(Z)). Let

P =

(
P1 P2

P t
2 P3

)
= p−k

((
D

pE

)
−M0QM t

0

)
with P1 a r by r block. Write M = (In + pkN)M0 and N =

(
N1 0
N3 0

)
. Note that det(M) = det(M0)

(mod p). We consider the equation(
P1 P2

P t
2 0

)
= N

(
D

pE

)
+

(
D

pE

)
N t =

(
N1D +DN t

1 DN t
3

N3D

)
(mod pk Matn(Z)).

A solution for N is the following. We set N3 = P t
2D̄ with D̄ such that DD̄ = In (mod pk Matn(Z)).

Let N1 = (nij) and P1 = (pij). We set nii = pii/2 for i ≤ r−1, nrr = pnn/(2x) and for 1 ≤ j < i ≤ r
set nij = pij . If 1 ≤ i < j ≤ r, set nij = 0. In conclusion, we have

MQM t = M0QM t
0 + pk(NM0QM t

0 +M0QM t
0N

t) (mod p2k Matn(Z))

=

(
D

pE

)
− pk

(
P1 P2

P t
2 P3

)
+ pk

(
P1 P2

P t
2 0

)
=

(
D

pE − pkP3

)
.

By induction on k, we have a solution modulo p2k for all k ≥ 1. □

Proposition 5.7. Let p be an odd prime. Let T and Q be half-integral symmetric matrices and
C = diag(pσ1 , . . . , pσn) with 2 ≤ σ1 ≤ · · · ≤ σn. Let N be the number of solutions U to the equation

2T = 2UQU t (mod [C̃])(5.8)

with
U ∈ X̃1(C) = {U (mod C̃Matn(Z)) | (C,U) coprime symmetric pair}.

(1) If C = pkIn is scalar, k ≥ 1, and m = ⌊k
2 ⌋, then

N ≪ pmn(n−1)/2(pm, 2Q, 2T )n.

(2) For all C, we have

N ≪
n∏

i=1

p(n−i)µi(pµi , 2Q′
i).(5.9)

Here Q′
i is the bottom-right block of Q of size s by s, where s is the smallest integer with

σs = σi.
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Remark. Since U is invertible, it is equivalent to consider the equation Q = ŪT Ū t. In other words,
we can replace Q by T in Equation (5.9). Moreover if (pµ, 2Q) ̸= (pµ, 2T ), then there are no solution.
In that case, K(Q,T ;C) = 0 by Proposition 4.2.

Proof. We split the proof in two cases, depending on the shape of C.
Case 1 : C = pkIn. Let m = ⌊k

2 ⌋. In that case, U is symmetric and X̃1(C) consists of invertible
symmetric matrices (mod pmXn(Z)). We consider first the case where rkp(Q) ≥ 1.
Case 1.1 : (p,Q) = 1. By Lemma 5.6, there is M ∈ Matn(Z) with p ∤ det(M) such that Q =
M
(
D

pE

)
M t withD = diag(1, . . . , 1, x) ∈ Matr(Z), where r ̸= 0 is the rank ofQ (mod pMatn(Z)).

Let V = M tUM and P = M tTM . Then

T = UQU t (mod pm Matn(Z)) ⇔ P = V

(
D

pE

)
V t (mod pm Matn(Z)).

Write P =
(

P1 P2

P t
2 P3

)
and V =

(
V1 V2

V t
2 V3

)
with P1, V1 blocks of size r by r. Then the above equation is(

P1 P2

P t
2 P3

)
=

(
V1DV1 + pV2EV t

2 V1DV2 + pV2EV3

V t
2DV1 + pV3EV t

2 V t
2DV2 + pV3EV3

)
.

Since E could be 0, we have to fix V3 arbitrarily among the O(pm(n−r)(n−r+1)/2) possibilities. Note
that (p, P ) = 1 since V is invertible. Suppose that (p, P2) = 1. Then clearly (p, V1) = (p, V2) = 1.
We conclude that (p, P1) = (p, P3) = 1 and these cases are treated below.

Suppose that (p, P1) = 1. By Lemma 5.3 (4), we have O(pmr(r−1)/2) solutions for V1. Moreover
(p, V1) = 1. Then we can fix V2 in the top-right equation using Hensel’s method. More precisely, we
have

P2 = V1DV2 + pV2EV3 (mod pm).

Let W0 be a solution for V2 modulo p. Since (p, V1) = 1, we have O(p(r−1)(n−r)) solutions for W0

by Lemma 5.3 (1). Suppose that we have a solution W1 modulo pl for l ≥ 1. Let W = W1 + pkW2

be a solution modulo pl+1. Then

p−k(P2 − V1DW1 − pW1EV3) = V1DW2 (mod p).

There are O(p(r−1)(n−r)) solutions for W2 by Lemma 5.3 (1). By induction, we get O(pm(r−1)(n−r))
possibilities for V2.

Suppose that (p, P3) = 1. By Lemma 5.3 (3), we have O(pm(r−1)(n−r)) possibilities for V2 in
the bottom-right equation. Moreover, (p, V2) = 1. Then by Lemma 5.3 (2), we have O(pmr(r−1)/2)
possibilities for V1 in the top-right equation.

In total, we have

O
(
pmr(r−1)/2 · pm(r−1)(n−r) · pm(n−r)(n−r+1)/2

)
= O

(
pmn(n−1)/2

)
solutions for V in that case.
Case 1.2 : (p,Q) ̸= 1. Since U is invertible, we also have (p, T ) ̸= 1. More precisely, there is an
integer l such that Q = plQ′ and T = plT ′ and (p,Q′) = (p, T ′) = 1. If l ≥ m, then we can not say
anything about U and take it arbitrarily. Otherwise, we get the equation

T ′ = UQ′U (mod pm−l Matn(Z)).
Applying Case 1.1, we get

O
(
p(m−l)n(n−1)/2

)
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solutions for U (mod pm−l Matn(Z)). We lift these solutions arbitrarily to a solution of the form
U + pm−lV . There are O(pln(n+1)/2) possibilities for V . In total, we get

O
(
p(m−l)n(n−1)/2 · pln(n+1)/2

)
= O(pmn(n−1)/2(pm, Q, T )n)

solutions for U .

Case 2 : C not scalar. Let σ = σ1, µ = µ1 and C = diag(pσIs, C1) with C1 a block of size n− s by
n− s with all its prime powers strictly larger that pσ. We write

Q =

(
Q1 Q2

Qt
2 Q3

)
, T =

(
T1 T2

T t
2 T3

)
, U =

(
U1 U2

p−σC1U
t
2 U3

)
∈ X̃1(C)

with Q1, T1, U1 blocks of size s by s. Note that U1 is symmetric and p ∤ det(U1). Let

Y =

(
Is p−σY2C1

In−s

)
with Y2 = −Ū1U2 (mod pσ Mats,n−s(Z)). Then CY C−1 =

(
Is Y2

In−s

)
and Y −1 =

(
Is −p−σY2C1

In−s

)
.

We compute

Y tUCY C−1 =

(
U1 U1Y2 + U2

p−σC1(Y
t
2U1 + U t

2) U3 + p−σC1(Y
t
2U2 + U t

2Y2) + p−σC1Y
t
2U1Y2

)
=:

(
V1

V3

)
(mod C̃Matn(Z)).

Note that the congruence on the last line holds since Y tC̃ = C̃(C̃−1Y tC̃). The last parenthesis is
an integral matrix. Note also that (C, V ) is a coprime symmetric pair:

V C = Y tUCY = Y tCU tY = CV t.

This is equivalent to (pσIs, V1) and (C1, V3) being coprime symmetric pairs.
We define a map

X̃1(C) → X̃1(p
σIs)×Mats,n−s(Z/pµZ)× X̃1(C1),

U 7→ (V1, Y2, V3).

Clearly the map is injective. Since U1 = V1 and Y is invertible, the map is bijective. Let R = Y tTY
and S = CY −1C−1QC−1Y −tC. Then

T = UQU t (mod [C̃]) ⇔ R = V SV t (mod [C̃]).

This gives a bijection between the solutions U of the left-hand side and the solutions (V1, Y2, V3) of
the right-hand side. Written in blocks, we get(

R1 R2

Rt
2 R3

)
=

(
V1S1V

t
1 V1S2V

t
3

V3S2V
t
1 V3S3V

t
3

)
(mod [C̃]),(5.10)

where the blocks are given by

R =

(
R1 R2

Rt
2 R3

)
=

(
T1 p−σT1Y2C1 + T2

p−σC1Y
t
2 T1 + T t

2 T3 + p−σ(C1Y
t
2 T2 + T t

2Y2C1) + p−2σC1Y
t
2 T1Y2C1

)
,

S =

(
S1 S2

St
2 S3

)
=

(
Q1 − Y2Q

t
2 −Q2Y

t
2 + Y2Q3Y

t
2 Q2 − Y2Q3

Qt
2 −Q3Y

t
2 Q3

)
.

In particular, S3 = Q3.
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Consider the bottom-right block of Equation (5.10):

R3 = V3Q3V
t
3 (mod [C̃1]).

If C̃1 is a scalar matrix, we apply Case 1. Otherwise we suppose, by induction on n, that the
equation has

O

(
n∏

i=s+1

p(n−i)µi(pµi , Q′
i)

)
solutions for V3. Here Q′

i is the bottom-right block of Q of size s by s, where s is the smallest integer
with σs = σi.

Fix one such solution V3. Suppose that (p
µ, Q1, Q2, Q3) = (pµ, Q2, Q3). We consider the top-right

block of Equation (5.10). Let pk = (pµ, S2). Then we have the two equations

Q2 = Y2Q3 (mod pk),

p−kR2 = V1(p
−kS2)V3 (mod pµ−k).

Note that (pµ, R2) = pk since V1 and V3 are invertible. By Lemma 5.3 (2), the second equation has
O(ps(s−1)(µ−k)/2) solutions for V1 and there are O(ps(s+1)k/2) ways to lift them modulo pµ.

Let pl = (pk, Q3). Note that pl = (pµ, Q2 − Y2Q3, Q3) = (pµ, Q2, Q3). Then by Lemma 5.3 (1),
the first equation has O(ps(n−s−1)(k−l)) solutions for Y2 and there are O(ps(n−s)(µ−(k−l))) ways to
lift them modulo pµ. In total, we get

≪ ps(s−1)(µ−k)/2 · ps(s+1)k/2 · ps(n−s−1)(k−l) · ps(n−s)(µ−(k−l))

≪ ps(s−1)µ/2 · psk · ps(n−s)µ · p−s(k−l)

≪ ps(2n−s−1)µ/2 · psl

= ps(2n−s−1)µ/2(pµ, Q2, Q3)
s

solutions for the pair (V1, Y2).
Finally, suppose that (pµ, Q1, Q2, Q3) = (pµ, Q1) = pk and (pµ, Q2, Q3) > pk. Then (pµ, S1) =

(pµ, R1) = pk and the top-left block of Equation (5.10) is

R1 = V1S1V
t
1 (mod pµ).

By Case 1, we have

O(ps(s−1)µ/2(pµ, S1, R1)
s) = O(ps(s−1)µ/2(pµ, Q1, Q2, Q3)

s)

solutions for V1. We fix Y2 arbitrarily among the O(ps(n−s)) possibilities. In total, we get

O(ps(s−1)µ/2(pµ, Q1, Q2, Q3)
s · ps(n−s)) = O(ps(2n−s−1)µ/2(pµ, Q1, Q2, Q3)

s)

solutions for the pair (V1, Y2).
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Note that Q′
i = Q for i ≤ s. We conclude that

N ≪ ps(2n−s−1)µ/2(pµ, Q1, Q2, Q3)
s ·

n∏
i=s+1

p(n−i)µi(pµi , Q′
i)

≪
s∏

i=1

p(n−i)µi(pµi , Q′
i)

n∏
i=s+1

p(n−i)µi(pµi , Q′
i)

=

n∏
i=1

p(n−i)µi(pµi , Q′
i).

□

Now, we prove Theorem 1.1 using all the estimates above. First note that if there is a s ≤ n such
that σ1 = · · · = σs = 0 and σs+1 ̸= 0, by Proposition 2.11 we have Kn(Q,T ;C) = Kn−s(Q3, T3;C3).
Moreover

s∏
i=1

p(n−i+1)σi(pµi , 2Q′
i)(p, 2Q

′
i)

(σi−2µi)/2 = 1

So if Theorem 1.1 is valid for σ1 ̸= 0, then it is valid for σ1 = 0.
Consider Proposition 4.2. Applying Remark (2) after Proposition 5.4, Proposition 5.5 and Propo-

sition 5.7, we get

|K(Q,T ;C)| ≪ ps(n−s/2)(p, 2Q2, 2Q3)
s/2 ·

n∏
i=s+1

p(n−i+1)µi ·
n∏

i=s+1

p(n−i)µi(pµi , 2Q′
i)

·
n∏

i=s+1

p(n−i+1/2)(σi−2µi)(p, 2Q′
i)

(σi−2µi)/2

=

s∏
i=1

pn−i+1/2(p, 2Q2, 2Q3)
1/2

n∏
i=s+1

p(n−i+1/2)σi(pµi , 2Q′
i)(p, 2Q

′
i)

(σi−2µi)/2.

For p ̸= 2, this prove the second part of Theorem 1.1. Finally, if C = pkIn is scalar with k ≥ 2, the
sums over W and X are equal to 1 in Proposition 4.2 and Q = Q3, T = T3. We apply the estimates
for scalar C in Proposition 5.5 and Proposition 5.7. Recall that (p, 2Q) = (p, 2Q, 2T ) or Proposition
5.7 has no solutions. Let m = ⌊k

2 ⌋. We get

|K(Q,T ;C)| ≪
n∏

i=1

p(n−i+1)m · pmn(n−1)/2(pm, 2Q, 2T )n/2 · pn
2(k−2m)/2(p, 2Q)n(k−2m)/2

= pkn
2

(pm, 2Q, 2T )n/2(p, 2Q)n(k−2m)/2.

For p ̸= 2, this prove the first part of Theorem 1.1.

5.1. The case p = 2. In this section, we adapt the proof of Theorem 1.1 to the case of the even
prime 2. We did not use that p is odd until Proposition 4.2, except where we used Lemma 5.2. We
start the section by giving adapted versions of Lemma 5.2 and Lemma 5.6. Then we consider the
consequences of these adaptations in Lemma 5.3. Finally, we adapt the proof of Theorem 1.1 to
this case.
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Lemma 5.8 (Lemma 5.2 for p = 2). Let p = 2. Let C = diag(pσ1 , . . . , pσn) with 0 ≤ σ1 ≤ · · · ≤ σn

and let A ∈ Xn(R) be a half-integral matrix. We have∑
D (C Matn(Z))
(C,D) sym. pair

e(C−1DA) = δ2A=0 ([C])

n∏
i=1

δaii=0 (2µi )p
(n−i+1)σi .

Remark. If we remove the additional equations for the diagonal, we only grow the number of
solutions. We will mostly consider only the equation 2A = 0 (mod [C]).

Proof. In the proof of Lemma 5.2, we get the conditions

aij + aji = 0 (mod 2µi) (i < j),

aii = 0 (mod 2µi).

Since A is half-integral, the equation 2A = 0 (mod [C]) recovers the first equation, but only gives

2aii = 0 (mod 2µi).

We artificially add the second equation to the result to conclude. □

Lemma 5.9 (Lemma 5.6 for p = 2). Let p = 2 and k ≥ 1 an integer. Let H = ( 0 1
1 0 ). Let

Q ∈ Xn(R) be a half-integral matrix. Then there are M ∈ Matn(Z) and E ∈ Xn−r(Z) and either
D = diag(d1, . . . , dr) with D = Ir (mod 2) or D′ = diag(H1, . . . ,Hr/2) with D′ = diag(H, . . . ,H)
(mod 2) such that

2MQM t =

(
D

2E

)
(mod 2k) or 2MQM t =

(
D′

2E

)
(mod 2k),

with r being the rank of 2Q (mod 2). Also, r is even in the second case.

Proof. Consider Q̃ = 2Q. It is a symmetric integral matrix with even coefficients on the diagonal.
Theorem IV.11 in [New1] says that there exists M with 2 ∤ det(M) such that

MQ̃M t =

(
Ir

0n−r

)
or MQ̃M t =


H

. . .

H
0n−r

 (mod 2Matn(Z)),

where the last matrix contains r/2 copies of H (r is even). In the first case, the proof goes essentially
the same way except that we have different diagonal elements. Here we set nii = 0. Then the final
matrix D = diag(d1, . . . , dr) is such that di = 1 (mod 2).

In the second case, let D be the diagonal matrix given by r/2 copies of H. We want to find
N1, N3 such that

P1 = N1D +DN t
1 (mod 2k Matr(Z)),

P2 = DN t
3 (mod 2k Matr,n−r(Z)).

Since 2 ∤ det(D), we have N3 = P t
2D̄ with DD̄ = In (mod 2k). Writing P1 = (Pij) and N1 = (Nij)

where each Pij , Nij is a 2 by 2 blocks. We get

Pij = (N1D +DN t
1)ij = NijH +HNji.
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Let i < j. We set Nij = PijH and Nji = 0. For i = j, write Pii = ( p1 p2
p2 p4 ) and Nii =

( n1 n2

n3 N3

)
. We

get (
p1 p2
p2 p4

)
=

(
n2 n1

n4 n3

)
+

(
n2 n4

n1 n3

)
=

(
2n2 n1 + n4

n1 + n4 2n3

)
(mod 2k Mat2(Z)).

We set n2 = n3 = n4 = 0 and n1 = p2. As in the first case, we get a matrix D = diag(H1, . . . ,Hr/2)
with D = diag(H, . . . ,H) (mod 2). □

Now, we adapt Lemma 5.3. The proof for (1)–(4) are still valid. For (3) and (4), we have to show
the same statement with D = diag(H1, . . . ,Hr/2) as in Lemma 5.9. For (5), we have to adapt the
proof. From now, we write v(a) for the 2-adic valuation of a ∈ Z. First, we need the following result.

Lemma 5.10 ([DMM]). Let a, b, c be integers with v((a, 2b, c)) < k. The quadratic equation

ax2 + 2bx+ c = 0 (mod 2k)

has at most 2v(b
2−ac)/2+2 solutions. Moreover, if v(a) ̸= v((a, 2b, c)), then the equation has at most

2v((a,b,c)) solutions.

Remark. Note that the first case is always worse than the second since v(b2 − ac) ≥ 2v((a, b, c)).

Proof. Let t = v(a, b, c). The article states that the number of solutions is at most 2v((a,b,c))+D/2+2

solutions, where
D = v((b/2t)2 − ac/22t) = v(b2 − ac)− 2v((a, b, c))

is the discriminant of the reduced equation. By inserting the second equation in the first, we
conclude. Moreover, if v(a) ̸= v((a, 2b, c)), then we are only in the cases of Table 1 where we have
2v((a,b,c)) solutions. □

Proof of Lemma 5.3 for p = 2. First, we consider the equation R = UHiU
t for 2 by 2 matrices,

with R and Hi symmetric and Hi = H (mod 2). In coordinates, we get(
r1 r2
r2 r4

)
=

(
u1 u2

u3 u4

)(
h1 h2

h2 h4

)(
u1 u3

u2 u4

)
=

(
h1u

2
1 + 2h2u1u2 + h4u

2
2 h1u1u3 + h2(u1u4 + u2u3) + h4u2u4

∗ h1u
2
3 + 2h2u3u4 + h4u

2
4

)
(mod 2k).(5.11)

We fix u2 (mod 2k) and consider the top-left block in Equation (5.11). If 2u2 = 0 (mod 2k), we
have O(2k) possibilities for u1. Suppose that 2u2 ̸= 0 (mod 2k). Recall that 2 ∤ h2. The equation
with respect to u1 has discriminant

D = (h2u2)
2 − h1(h4u

2
2 − r1) = u2

2(h
2
2 − h1h4) + h1r1.

Let v = v(D). Then we have O(2v/2) solutions for u1. We get the additional equation

u2
2(h

2
2 − h1h4) = −h1r1 (mod 2v)

Since 2 ∤ det(H), we have O(2v/2) solutions for u2 by the claim in Lemma 5.3. There are O(2k−v)
ways to lift the solution modulo 2k. Then the number of solutions for the pair (u1, u2) is bounded
by

≪
k∑

v=0

2k−v+v/2+v/2 ≪ k2k.(5.12)
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Note that UHU t = det(U)H (mod 2). In particular, (2, R) = 1 if and only if 2 ∤ r2. In that case,
we have the following equation

r2 = h1u1u3 + h2(u1u4 + u2u3) + h4u2u4 (mod 2k).

We see that 2 ∤ u1, u4 or 2 ∤ u2, u3. Suppose without loss of generality that the first holds. If
2 | u1, u4, exchange their roles in the following. We fix u1 and u4. Then in the top-left block of
Equation (5.11), the discriminant for u2 has valuation

v(u2
1(h

2
2 − h1h4) + h4r1) = 0.

So we have O(1) solutions for u2. The same is true for the bottom-right block of Equation (5.11). We
get O(1) solutions for u3. In total, we have O(p2k) solutions for U . We conclude that if (2, R) = 1,
the equation R = UHU t (mod 2k) has O(22k) solutions for U .

Finally, we consider the case where U is symmetric. The equation is the same, except that
u2 = u3. Again if (2, R) = 1, then 2 ∤ r2. We get the equation

r2 = h1u1u2 + h2(u1u4 + u2
2) + h4u2u4 (mod 2k).

As in the asymmetric case, either 2 ∤ u1, u4 or 2 ∤ u2. In the second case, we can fix u2 and do the
same as before. If 2 ∤ u1, u4, fix u1 (mod 2k). Then we saw in the asymmetric case that u2 has O(1)
solutions. We get the equation

r2 − h1u1u2 − h2u
2
2 = u4(h2u1 + h4u2) (mod 2k).

Since 2 ∤ h2 and 2 | h4, this fixes u4. We conclude that if U is symmetric and (2, R) = 1, the
equation R = UHU t (mod 2k) has O(2k) solutions for U .

Now, we prove what is missing for (3), (4) and (5). For (3) and (4), we suppose that m and n are
even and we consider D = diag(H1, . . . ,Hm/2). We write R = (Rij), U = (Uij) in 2 by 2 blocks.

(3) Case m = 2: for 1 ≤ i, j ≤ n/2, we have

Rij = Ui1H1U
t
j1 (mod 2k).

If i0, j0 is such that (2, Ri0j0) = 1, then (2, Ui01) = 1 and so (2, Ri0i0) = 1. We saw above
that we have O(22k) solutions for Ui01 in that case. Then consider the equation

Ri0j = Ui01H1Uj1 (mod 2k).

for j ̸= i0. By Lemma 5.3 (1), we have O(22k) choices for Uj1 since 2 ∤ det(H1). In total,

we get O(22k·n/2) choices for U .
Case m = 4: for 1 ≤ i ≤ n/2, we have

Rii = UiGU t
i + ViHV t

i

Let Ui = (uj), Vi = (vj) and G,H with coordinates numbered as in Equation (5.11). In the
top-left block, we have the equation

r1 = g1u
2
1 + 2g2u1u2 + g4u

2
2 + h1v

2
1 + 2h2v1v2 + h4v

2
2 (mod 2k).

Let r = r1 − g1u
2
1 − 2g2u1u2 − g4u

2
2 and v = v(r). The number of solutions of

r1 = g1u
2
1 + 2g2u1u2 + g4u

2
2 (mod 2v)

is O((v + 1)2v) as seen above. They lift in O(22k−2v) ways, so we have O((v + 1)22k−v)
solutions for u1, u2 for a fixed v. Now we consider the equation

r = h1v
2
1 + 2h2v1v2 + h4v

2
2 (mod 2k).
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Let t = v(v2). We have O(2k−t) choices for v2 for a fixed t. Suppose that t < v(h1)− 1 or
v(h4v

2
2 − r) < v(h1). Then we are in the second case of Lemma 5.10 for the equation with

respect to v1. Therefore, we have

O(2min{t,v(h4v
2
2−r)})

solutions for v1 in the last equation. Note that if t ≤ v, the minimum is t and otherwise it
is v. We see that the number of solutions for the pair (v1, v2) is in that case

≪
k∑

v=0

(v + 1)22k−v

 v∑
t=0

2k−t · 2t +
v(h1)−2∑
t=v+1

2k−t · 2v


≪
k∑

v=0

(v + 1)22k−v((v + 1)2k + 2k)

≪ 23k.

Suppose that t ≥ v(h1)− 1 and v(h4v
2
2 − r) ≥ v(h1). This implies that

v = v(r − h4v
2
2 + h4v

2
2) ≥ min{v(h1), 2t+ 1} ≥ v(h1)− 1.

Let D = v22(h
2
2 − h1h4) + h1r and d = v(D). The number of solutions for v1 is O(2d/2).

Since d > 2(v(h1)− 1), we have the additional equation

v22(h
2
2 − h1h3) = −h1r (mod 2d).

This has at most O(2(v(h1)+v)/2) solutions by the claim in the original proof of Lemma 5.3.
There are O(2k−d) ways to lift them modulo 2k. In conclusion the number of solutions for
(u1, u2, v1, v2) is

k∑
v=v(h1)−1

(v + 1)22k−v
k∑

d=2(v(h1)−1)

2d/2 · 2(v(h1)+v)/2 · 2k−d

≪ 23k
k∑

v=v(h1)+1

(v + 1)2−v/2
k∑

d=2(v(h1)−1)

2v(h1)/2−d/2

≪ 23k.

Therefore the number of solutions for the pair (Ui, Vi) isO(26k) and we conclude by summing
over i = 1, . . . , n/2.
Case m ≥ 6: Fix Uij (mod 2k) for 1 ≤ i ≤ n/2 and 1 ≤ j ≤ (m− 4)/2. Then

Ui,m−1Hm−1U
t
i,m−1 + UimHmU t

im = Rii −
(m−4)/2∑

j=1

UijHjU
t
ij .

By Case m = 4, there are at most O(26k) solutions for the pair (Ui,m−1, Uim). In total, we

have at most O(2k(m−1)n) solutions.
(4) Case n = 2: the equation is R = UH1U

t with U symmetric. This was solve at the beginning.
Case n = 4: Let i = 1, 2. We have

Rii = Ui1GU t
i1 + Ui2HU t

i2 (mod 2k).
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Let v1 = v((u13, u14)), v2 = v((u23, u24)) and v = min{v1, v2} be fixed. Then U12 =
0 (mod 2v). From the equation R11 = U11GU t

11 + U12HU t
12, we get in coordinates the

equations

r11 = g1u
2
11 + 2g2u11u12 + g4u

2
12 (mod 22v1),

r12 = g1u11u12 + g2(u11u22 + u2
12) + g4u12u22 (mod 22v),

r22 = g1u
2
12 + 2g2u12u22 + g4u

2
22 (mod 22v2).

Our goal is to show that the number of solutions for (u11, u12, u22) is

O((v1 + v2 + 1)223k−v−v1−v2).

Suppose that 2u12 ̸= 0 (mod 22v). Consider the first and the last equation. Then the
discriminant for the other variable than u12 in them is respectively

D1 = u2
12(g

2
2 − g1g4) + g1r11,

D2 = u2
12(g

2
2 − g1g4) + g4r22.

Let di = v(Di), i = 1, 2. Then we get the additional equation Di = 0 (mod 2di) for u12. Let
d = max{d1, d2}. We have O(2d/2) solutions for u12 (mod 2d) by the claim in the original
proof of Lemma 5.3. We can lift the solutions modulo 2k in O(2k−d) ways. Then the number
of solutions for uii (mod 22vi) is O(2di/2). There are O(2k−2vi) ways to lift these solutions
modulo 2k. Therefore the number of solutions for U11 (mod 2k) in that case is

≪
2v1∑
d1=0

2k−2v1+d1/2

(
d1∑

d2=0

2k−2v2+d2/22k−d1/2 +

2v2∑
d2=d1+1

2k−2v2+d2/22k−d2/2

)

≪
2v1∑
d1=0

2k−2v1+d1/222k−2v2(1 + 2v2)

≪ (v2 + 1)23k−v1−2v2 .

Suppose now that 2u12 = 0 (mod 22w) with w = max{v1, v2}. Then we have O(1)
solutions for u12 (mod 22w). Consider the equation

r12 = g2(u11u22 + u2
12) (mod 22v).

The product u11u22 (mod 22v) is fixed by the equation since 2 ∤ g2. Let t be the maximum
between its valuation and 2v. Then v(u11) + v(u22) ≥ t. The inequality takes into account
the case t = 2v. Let r = v(u11). Dividing the above equation by 2r, we can invert 2−ru11

and fix u22 (mod 22v−r). There are O(2r) ways to lift u22 modulo 22v. Then the number of
solutions for the pair (u11, u22) modulo 22v is

≪
2v∑
t=0

t∑
r=0

22v−r2r ≪
2v∑
t=0

(t+ 1)22v ≪ (v + 1)222v.

There are O(23k−2w−4v) ways to lift the solutions modulo pk. We get O((v+1)223k−2w−2v)
solutions for U11 in that case.
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Suppose that v1 < v2 and that 2u12 = 0 (mod 22v1) but 2u12 ̸= 0 (mod 22v2). Let
t = v(u22). We have the two equations

r12 = g2(u11u22 + u2
12) (mod 22v1)

r22 = g1u
2
12 + 2g2u12u22 + g4u

2
22 (mod 22v2).

For any value of t, we O(2k) solutions for u11, O(2k−2v1) solutions for u12 and O(2k−t)
solutions for u22. We apply these bounds for t ≥ v2. Suppose that t ≤ v2−1. Since 2u12 = 0
(mod 22v1), the second equation implies that r22 = g4u

2
22 (mod 22v1). The discriminant of

the second equation with respect to u12 is

D = g22u
2
22 − g1(g4u

2
22 − r22) = g22u

2
22 (mod 22v1).

Suppose that t ≤ v1 − 1. Then v(D) = 2t. If t ≥ v1, then v(D) ≤ 2v2. We have O(2v(D)/2)
solutions for u12 (mod 22v2). There are O(2k−2v2) ways to lift u12 modulo 2k. We have
O(2k−t) solutions for u22 in any case. Finally, if t ≤ 2v1, the first equation implies that

g22
−tu22u11 = 2−t(r12 − g2u

2
12) (mod 22v1−t).

Since 2−tu22 is invertible, u11 is fixed. There are O(2k−2v1+t) ways to lift it. Note that this
estimate is trivial for t > 2v1. In total, we have

≪
v1−1∑
t=0

2k−t2k−2v2+t2k−2v1+t +

v2−1∑
t=v1

2k−t2k−v22k−2v1+t +

k∑
t=v2

2k−t2k−2v12k

≪ 23k−v1−2v2 + (v2 + 1)23k−2v1−v2 + 23k−2v1−v2

≪ (v2 + 1)23k−2v1−v2 .

If v1 > v2 and 2u12 = 0 (mod 22v2) but 2u12 ̸= 0 (mod 22v1), we can exchange the role of
v1 and v2 in the above proof and get a similar bound.

Once U11 is fixed, consider U12. We have the equations

s1 = h1u
2
13 + 2h2u13u14 + h4u

2
14 (mod 2k),

s2 = h1u
2
23 + 2h2u23u24 + h4u

2
24 (mod 2k),

with

s1 := r11 − (g1u
2
11 + 2g2u11u12 + g4u

2
12),

s2 := r22 − (g1u
2
12 + 2g2u12u22 + g4u

2
22).

Recall that v1 = v((u13, u14)). Note that v(s1) ≥ 2v1 + 1. If v1 ≥ k − 1, then we have O(1)
choices for u13 and u14. Suppose that v1 ≤ k−2. Suppose also v(u14) = v1. Otherwise inverse
the roles of u13 and u14 in what follows. The discriminant of the first equation with respect
to u13 is D = u2

14(h
2
2 − h1h4) + h1s1. Then v(D) = 2v1. We saw before Equation (5.12)

that the number of solutions for the pair (u13, u14) once the valuation of the determinant
is fixed is O(2k). ref Doing the same with the pair (u23, u24), we get O(22k) solutions for
U12 (mod 2k).

Finally, we have the equation

R12 − U11GU12 = U12HU22 (mod 2k Mat2(Z)).
We fixed U11 and U12. Both sides are divisible by v and (2, 2−vU12) = 1. By Lemma 5.3
(2), we get O(2k−v) solution for U22 (mod 2k−v Mat2(Z)). We have O(23v) ways to lift the
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solutions modulo 2k. In total, we have O(2k+2v) solutions for U22. Summing over v1 and
v2, the number of solutions for U is

≪ 22k
k∑

v1=0

(
v1∑

v2=0

(v1 + 1)223k−v1−2v22k+2v2 +

k∑
v2=v1+1

(v2 + 1)223k−2v1−v22k+2v1

)

≪ 22k
k∑

v1=0

24k((v1 + 1)32−v1 + (v1 + 1)22−v1)

≪ 26k.

Case n ≥ 6: let 1 ≤ i ≤ n/2. We have

Rii =

n/2∑
j=1

UijHjU
t
ij (mod 2k)

Fix Uij (mod 2k) for 1 ≤ i ≤ j ≤ (n− 4)/2. Then

Ui,n−1Hn−1U
t
i,n−1 + UinHnU

t
in = Rii −

(n−4)/2∑
j=1

UijHjU
t
ij (mod 2k).

Consider i in increasing order. We saw in (1) that we have O(24k) solutions for the pair
(Ui,n−1, Uin) once the rest is fixed. Finally for (n − 4)/2 ≤ i ≤ n/2, we get a 2 by 2 block
matrix equation that corresponds to the case n = 4. In total, we get

O(2k(n−4)(n−3)/2 · 26k(n−4)/2 · 26k) = O(2kn(n−1)/2)

solutions for U .
(5) The proof is coherent. We only lose a power of 2 in the second display when we evaluate

Tj0j0 = (QU t + UQt)j0j0 (mod 2k).

But in the only application in Proposition 5.5, we have an additional equation (see below)

Tj0j0 = (QU t + UQt)j0j0 (mod 2k+1).

So we get the same bound from this equation. The rest of the proof does not change.

□

Now, we can consider the proofs of Propositions 5.4, 5.5 and 5.7 for p = 2.
Proposition 5.4: we consider A to be half-integral and B1 to be symmetric half-integral, which is the
case in our application. Then 2A and 2B1 are integral and tr(MB1) is integral for any symmetric
matrix M ∈ Xn(Z). With this in mind, the proof goes the same way. We get the same results (with
the condition on 2A in the second case).
Proposition 5.5: we consider A and B to be half-integral symmetric matrices. The proof goes the
same way. We get the equations

2(2µj−µimij +mji) = 0 (mod 2σi−2µi), (i < j),

mii = 0 (mod 2σi−2µi).

If we drop the second equation, we get Equation (5.5) with R replaced by 2R. The proof in Case
1 is coherent. The second equation makes the above proof of Lemma 5.3 (5) valid. The rest of the
proof goes the same way. We use that 2R = 2BW t and get the same result with 2B instead of B.
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Proposition 5.7: after applying Lemma 5.8, we get an additional congruence for the diagonal ele-
ments. If we drop it, the proof goes the same way, with two different possibilities for D in Case
1. Since the bound from Lemma 5.3 (3), (4) are the same for the two different D, we obtain the
same result in Case 1. The rest of the proof is the same with 2Q, 2T instead of Q,T and 2Q′

i in the
bound instead of Q′

i. We conclude that the same results hold.
Now that we showed that all estimates hold for p = 2, the rest of the proof of Theorem 1.1 for

p = 2 goes the same way.

6. Application

In this section, we prove Theorem 1.3. First, we prove a non-trivial bound for a Kloosterman
sum with a general C and give a bound on Fourier coefficients of smooth functions.

Proposition 6.1. Let C ∈ Matn(Z) with det(C) ̸= 0. Let Q,T be half-integral symmetric matrices.
Let ϵ > 0. We have

Kn(Q,T ;C) ≪n,ϵ c
ϵ
nc

n−1/2
1 (c1, 2Q, 2T )3/2

n∏
i=2

cn−i+1
i

where the implicit constant only depends on n and ϵ. Here c1 | · · · | cn are the elementary divisors
of C.

Proof. Note that the result is true for n = 1 by the Weil bound. Suppose that C is not in its Smith
normal form C ′. There are U, V ∈ GLn(Z) such that C ′ = U tCV and by Lemma 2.7 we have

K(Q,T ;C) = K(Q[U ], T [V ];C ′).

Note that (c, 2Q[U ], 2T [V ]) = (c, 2Q, 2T ) for all c ∈ Z since U, V are invertible. So without loss of
generality, we suppose that C is in its Smith normal form.

Let C = diag(c1, . . . , cn) with c1 | · · · | cn. Suppose first that ci = pσi for a fixed prime p and
0 ≤ σ1 ≤ · · · ≤ σn. If σi ≤ 1 for all i = 1, . . . , n, Theorem 1.2 combined with Proposition 2.11 gives
the bound

K(Q,T ;C) ≪n c
n−1/2
1 (c1, 2Q, 2T )1/2

n∏
i=2

cn−i+1
i .(6.1)

If σn ≥ 2, Theorem 1.1 gives the bound

K(Q,T ;C) ≪n c
n−1+1/2
1 (c1, 2Q

′
1)

3/2
n∏

i=2

cn−i+1,
i

with Q′
1 = Q except if c1 = p. This is because (c′′1 , 2Q

′
1) ≤ (c′1, 2Q

′
1) ≤ (c1, 2Q

′
1). The same bound

is valid when replacing Q by T thanks to Lemma 2.9. So we can replace (c1, 2Q
′
1) by (c1, 2Q

′
1, 2T

′
1).

In the case where c1 = p, let C = diag(pIs, C1) with all the prime powers in C1 at least p2. We
have (p, 2Q′

1, 2T
′
1) = (p, 2Q2, 2Q3, 2T2, 2T3) where Q,T are split into blocks of the same size as C.

Suppose that
(p, 2Q2, 2Q3, 2T2, 2T3) = p.

Then in Proposition 4.2, the sum overX is trivial. Thus the sum overW isKs(Q1, T1; pIs). Applying
the bound of Equation (6.1) (or the Weil bound if n = 1), we get

K(Q,T ;C) ≪ c
n−1/2
1 (c1, 2Q1, 2T1)

1/2
n∏

i=2

cn−i+1
i .
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In conclusion, the following bound holds for any C = diag(pσ1 , . . . , pσn):

K(Q,T ;C) ≤ Enc
n−1/2
1 (c1, 2Q, 2T )3/2

n∏
i=2

cn−i+1
i(6.2)

with En a fixed constant that only depends on n.
Let ω(c) be the number of prime divisors of c (without multiplicity). We proved Equation (6.2)

in the case ω(cn) = 1. Now, we prove it for ω(cn) > 1 working by induction. Let p | cn and write
C = FG = diag(f1, . . . , fn) diag(g1, . . . , gn) with fi = (p∞, ci). By Lemma 2.8, we have

K(Q,T ;C) = K(QF , T ;F ) ·K(QG, T ;G)

with (p,QF ) = (p,Q) and (q,QG) = (q,Q) for all prime q | gn. Applying Equation (6.2) and
induction on ω(gn), we get

K(Q,T ;C) ≤ Enf
n−1/2
1 (f1, 2Q, 2T )3/2

n∏
i=2

fn−i+1
i

· Eω(cn)−1
n g

n−1/2
1 (g1, 2Q, 2T )3/2

n∏
i=2

gn−i+1
i

= Eω(cn)
n c

n−1/2
1 (c1, 2Q, 2T )3/2

n∏
i=2

cn−i+1
i .

Finally E
ω(cn)
n ≪n,ϵ c

ϵ
n for all ϵ > 0 by the divisor bound. This concludes the proof of the proposition.

□

Lemma 6.2 ([Gra], Corollary 3.2.10). Let f : (R/Z)m → C be a Ck function and 0 ̸= m ∈ Zm.
Then the m-th Fourier coefficient of f satisfies the bound∣∣∣f̂(m)

∣∣∣≪ Sf
k

∥m∥k∞
,

where Sf
k is the Sobolev norm of f of order k with respect to the sup-norm.

We recall the setting of Theorem 1.3. Let Tn = Xn(R/Z). Let C ∈ Matn(Z) be such that
det(C) ̸= 0. Consider

SC :=

{
(C−tAt, C−1D) ∈ Tn × Tn

∣∣∣∣ (A ∗
C D

)
∈ X(C)

}
.

Remark. Note that if C = mIn, then we have

SmIn =
{
(X/m, X̄/m) ∈ Tn × Tn : X ∈ Xn(Z/mZ), m ∤ det(X)

}
.

Theorem 6.3. Let C ∈ Matn(Z) be such that det(C) ̸= 0. Let f : Tn × Tn → C be a Ck-function
with k ≥ n(n+ 1) + 1. We have

1

|SC |
∑

(M,N)∈SC

f(M,N) =

∫
Tn×Tn

f(X1, X2)dX1 dX2 +On,ϵ

(
Sf
k c

−1/2
1 cϵn

)
where Sf

k is the Sobolev norm of f of order k with respect to the sup-norm and c1 | · · · | cn are the
elementary divisors of C.
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Remark. We see that if c1 → ∞ and the ratio between c1 and cn stays constant, then the set SC

equidistributes. This is the case if C = mC0 with C0 a matrix with det(C0) ̸= 0 and m → ∞.

Proof. Le f : Tn × Tn → C be a Ck function. We want to compute

1

|X(C)|
∑

(A ∗
C D )∈X(C)

f(C−tAt, C−1D)(6.3)

For Q,T half-integral symmetric matrices, we have the Fourier coefficient

f̂(Q,T ) =

∫
Tn×Tn

f(Y1, Y2)e(−QY1 − TY2)dY1 dY2

and the Fourier series
f(X1, X2) =

∑
Q,T

f̂(Q,T )e(QX1 + TX2).

By Theorem 3.2.16 in [Gra], the series converges absolutely. Inserting this in Equation (6.3), we get

f̂(0, 0) +
1

|X(C)|
∑

(Q,T )̸=(0,0)

f̂(Q,T )
∑

(A ∗
C D )∈X(C)

e(QC−tAt + TC−1D).

The last sum is K(Q,T ;C). Using the bounds from Proposition 6.1 and Lemma 6.2, we get

1

|X(C)|
∑

(Q,T )̸=(0,0)

f̂(Q,T )K(Q,T ;C) ≪n,ϵ c
−1/2
1 cϵn

∑
(Q,T )̸=(0,0)

(c1, 2Q, 2T )3/2

max{∥Q∥k∞ , ∥T∥k∞}

We write ℓ = (c1, 2Q, 2T ). The sum over Q,T is then∑
(Q,T )̸=(0,0)

(c1, 2Q, 2T )3/2

max{∥Q∥k∞ , ∥T∥k∞}
≪n

∑
ℓ|c1

∑
(Q,T )̸=(0,0)

ℓ3/2

ℓk max{∥Q∥k∞ , ∥T∥k∞}

≪n

∑
ℓ|c1

ℓ3/2−k
∞∑

m=1

mn(n+1)−1−k

where we wrote m = max{∥Q∥∞ , ∥T∥∞}. Note that the number of pair (Q,T ) with a fixed value

m is On(m
n(n+1)−1) since at least one coordinate must have value m. The two sums are uniformly

bounded if k ≥ n(n+ 1) + 1. We deduce that

1

|X(C)|
∑

(A ∗
C D )∈X(C)

f(C−tAt, C−1D) = f̂(0, 0) +O(c
−1/2
1 cϵn)

=

∫
T×T

f(Y1, Y2)dY1 dY2 +O(c
−1/2
1 cϵn).

□
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